Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy-Schwarz:
\(A=\dfrac{1}{\sqrt{x\left(y+2z\right)}}+\dfrac{1}{\sqrt{y\left(z+2x\right)}}+\dfrac{1}{\sqrt{z\left(x+2y\right)}}\)
\(\ge\dfrac{\left(1+1+1\right)^2}{\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+\sqrt{z\left(x+2y\right)}}\)
\(=\dfrac{9}{\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+\sqrt{z\left(x+2y\right)}}\)
Áp dụng liên tiếp Bunyakovsky và AM-GM:
\(\left(\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+\sqrt{z\left(x+2y\right)}\right)^2\)
\(\le\left(1^2+1^2+1^2\right)\left[x\left(y+2z\right)+y\left(z+2x\right)+z\left(x+2y\right)\right]\)
\(=3.3\left(xy+yz+xz\right)\)
Mà \(3\left(xy+yz+xz\right)\le\left(x+y+z\right)^2=3\)
\(3.3\left(xy+yz+xz\right)\le3.3=9\)
\(\Leftrightarrow\sqrt{x\left(y+2z\right)}+\sqrt{y\left(z+2x\right)}+z\sqrt{\left(x+2y\right)}\le\sqrt{9}=3\)
\(\Leftrightarrow A\ge\dfrac{9}{3}=3."="\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)
# Bài 1
* Ta cm BĐT sau \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) (1) bằng cách biến đổi tương đương
* Với \(x,y>0\) áp dụng (1) ta có
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\left(\sqrt{x}\right)^2}+\dfrac{1}{\left(\sqrt{y}\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\)
Mà \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)
\(\Rightarrow\) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\le1\) \(\Leftrightarrow\) \(0< \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\le1\) (I)
* Ta cm BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (2)
Áp dụng (2) với x , y > 0 ta có
\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge\dfrac{4}{\sqrt{x}+\sqrt{y}}\) (II)
* Từ (I) và (II) \(\Rightarrow\) \(\dfrac{4}{\sqrt{x}+\sqrt{y}}\le1\)
\(\Leftrightarrow\) \(\sqrt{x}+\sqrt{y}\ge4\)
Dấu "=" xra khi \(x=y=4\)
Vậy min \(\sqrt{x}+\sqrt{y}=4\) khi \(x=y=4\)
a: \(=\dfrac{1}{x-y}\cdot x^2\cdot\left(x-y\right)=x^2\)
b: \(=\sqrt{27\cdot48}\cdot\left|a-2\right|=36\left(a-2\right)\)
c: \(=\left(\sqrt{2012}+\sqrt{2011}\right)^2\)
d: \(=\dfrac{8}{7}\cdot\dfrac{-x}{y+1}\)
e: \(=\dfrac{11}{12}\cdot\dfrac{x}{-y-2}=\dfrac{-11x}{12\left(y+2\right)}\)
a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\)
\(=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}\)
\(=\dfrac{1}{2\sqrt{2}a}\)
\(=\dfrac{\sqrt{2}}{4a}\)
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)
chịu đấy :v
c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)
\(=\dfrac{x-2}{3-x}+\dfrac{x^2-1}{x-3}\)
\(=\dfrac{x-2}{-\left(x-3\right)}+\dfrac{x^2-1}{x-3}\)
\(=-\dfrac{x-2}{x-3}+\dfrac{x^2-1}{x-3}\)
\(=\dfrac{-\left(x-2\right)+x^2-1}{x-3}\)
\(=\dfrac{-x+1+x^2}{x-3}\)
d) \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(x-1\right)^2}\)
\(=\dfrac{1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{x-1}\)
\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)
\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{x\sqrt{y}-\sqrt{y}-x+1}\)
e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)
\(=4x-2\sqrt{2}+\dfrac{\sqrt{x^2\cdot\left(x+2\right)}}{\sqrt{x+2}}\)
\(=4x-2\sqrt{2}+\sqrt{x^2}\)
\(=4x-2\sqrt{x}+x\)
\(=5x-2\sqrt{2}\)
A=\(1+\dfrac{1}{y}+x+\dfrac{x}{y}+1+\dfrac{1}{x}+y+\dfrac{y}{x}\)
A= \(\left(x+\dfrac{1}{2x}\right)+\left(y+\dfrac{1}{2y}\right)+\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+2\)
Áp Dụng BĐT Cô si ta có:
\(\left(x+\dfrac{1}{2x}\right)\ge\sqrt{2}\); \(\left(y+\dfrac{1}{2y}\right)\ge\sqrt{2}\); \(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge2\)
\(\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge2\sqrt{\dfrac{1}{2x.2y}}=\dfrac{1}{\sqrt{xy}}\ge\dfrac{\sqrt{2}}{\sqrt{x^2+y^2}}=\sqrt{2}\)
suy ra A\(\ge4+3\sqrt{2}\)
Dấu = xảy ra
\(\left\{{}\begin{matrix}x=y\\x=\dfrac{1}{2x}\\y=\dfrac{1}{2y}\end{matrix}\right.\)
\(\Leftrightarrow\)x=y=\(\dfrac{\sqrt{2}}{2}\)
Vậy Min A=4+3\(\sqrt{2}\) khi x=y=\(\dfrac{\sqrt{2}}{2}\)
Trước hết ta có \(\dfrac{\left(x+y\right)^2}{2}\le x^2+y^2\Rightarrow x+y\le\sqrt{2\left(x^2+y^2\right)}=\sqrt{2}\)
\(A=1+\dfrac{1}{y}+x+\dfrac{x}{y}+1+\dfrac{1}{x}+y+\dfrac{y}{x}\)
\(A=2+x+y+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{x}{y}+\dfrac{y}{x}\ge2+x+y+\dfrac{4}{x+y}+2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}\)
\(\Rightarrow A\ge4+x+y+\dfrac{4}{x+y}=4+x+y+\dfrac{2}{x+y}+\dfrac{2}{x+y}\)
\(\Rightarrow A\ge4+2\sqrt{\left(x+y\right).\dfrac{2}{\left(x+y\right)}}+\dfrac{2}{\sqrt{2}}=4+3\sqrt{2}\)
\(\Rightarrow A_{min}=4+3\sqrt{2}\) khi \(x=y=\dfrac{1}{\sqrt{2}}\)
Bài 1 :
Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)
Theo BĐT Cô - Si dưới dạng engel ta có :
\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)
Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)
Đặt VT là T
Áp dụng AM-GM cho 3 số dương, ta có:
\(\dfrac{1}{\left(x-1\right)^3}+1+1+\left(\dfrac{x-1}{y}\right)^3+1+1+\dfrac{1}{y^3}+1+1\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}\right)\)
\(T\ge3\left(\dfrac{1}{x-1}+\dfrac{x-1}{y}+\dfrac{1}{y}-2\right)=3\left(\dfrac{3-2x}{x-1}+\dfrac{x}{y}\right)\)(đpcm)
\(P=\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{2}{x+2\sqrt{x}}+\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}\)
\(=\dfrac{\sqrt{x}\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}+\dfrac{2\left(\sqrt{x}-1\right)}{.....}+\dfrac{x+2}{....}\)
\(=\dfrac{\sqrt{x^3}+2x+2\sqrt{x}-2+x+2}{.....}=\dfrac{\sqrt{x^3}+3x+2\sqrt{x}}{....}\)
\(=\dfrac{\sqrt{x}\left(x+3\sqrt{x}+2\right)}{....}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{....}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
P/S: Chú ý điều kiện khi rút gọn, tự tìm.
Ta thấy:
\(\sqrt{\dfrac{1-y}{y}}\times\sqrt{\dfrac{y}{1-y}}=1\left(const\right)\)
=> Ta có thể đặt \(\sqrt{\dfrac{1-y}{y}}=t\left(t\ge0\right)\)
\(\Rightarrow\sqrt{\dfrac{y}{1-y}}=\dfrac{1}{t}\)
~ ~ ~
\(\sqrt{\dfrac{1-y}{y}}=t\)
\(\Rightarrow\dfrac{1-y}{y}=t^2\)
\(\Leftrightarrow1-y=yt^2\)
\(\Leftrightarrow yt^2+y=1\)
\(\Leftrightarrow y\left(t^2+1\right)=1\)
\(\Leftrightarrow y=\dfrac{1}{t^2+1}\)
~ ~ ~
\(x=\dfrac{1}{2}\left(t-\dfrac{1}{t}\right)=\dfrac{t^2-1}{2t}\)
\(\Rightarrow x^2+1=\dfrac{\left(t^2-1\right)^2}{4t^2}+1=\dfrac{\left(t^2-1\right)^2+4t^2}{4t^2}=\dfrac{\left(t^2+1\right)^2}{4t^2}\)
\(\Rightarrow\sqrt{x^2+1}=\left|\dfrac{t^2+1}{2t}\right|=\dfrac{t^2+1}{2t}\left(t\ge0\right)\)
~ ~ ~
\(B=\dfrac{2y\sqrt{1+x^2}}{\sqrt{1+x^2}-x}\)
\(=\dfrac{2\times\dfrac{1}{t^2+1}\times\dfrac{t^2+1}{2t}}{\dfrac{t^2+1}{2t}-\dfrac{t^2-1}{2t}}\)
\(=\dfrac{\dfrac{1}{t}}{\dfrac{2}{2t}}=1\)
áp dụng BDT AM-GM \(=>x+y\ge2\sqrt{xy}=>\left(x+y\right)^2\ge4xy\left(1\right)\)
mà \(x+y\le1=>\left(x+y\right)^2\le1\left(2\right)\)
(1)(2)\(=>4xy\le\left(x+y\right)^2\le1=>4xy\le1=>xy\le\dfrac{1}{4}\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\sqrt{1+x^2y^2}\ge2\sqrt{\dfrac{1+x^2y^2}{xy}}=2\sqrt{\dfrac{1}{xy}+xy}\)
\(=2\sqrt{\dfrac{1}{xy}+16xy-15xy}=2\sqrt{2\sqrt{16}-\dfrac{15}{4}}=\sqrt{17}\)
dấu"=" xảy ra<=>\(x=y=\dfrac{1}{2}\)
\(1\ge x+y\ge2\sqrt{xy}\Rightarrow xy\le\dfrac{1}{4}\Rightarrow\dfrac{1}{xy}\ge4\)
Ta có:
\(A\ge\dfrac{2}{\sqrt{xy}}.\sqrt{1+x^2y^2}=2\sqrt{\dfrac{1}{xy}+xy}=2\sqrt{\left(xy+\dfrac{1}{16xy}\right)+\dfrac{15}{16}.\dfrac{1}{xy}}\)
\(A\ge2\sqrt{2\sqrt{\dfrac{xy}{16xy}}+\dfrac{15}{16}.4}=\sqrt{17}\)
\(A_{min}=\sqrt{17}\) khi \(x=y=\dfrac{1}{2}\)