Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ cm bđt: x²+y² ≥ (x+y)²/2, khai triễn là ra hằng đẳng đúng, dấu "=" khi x = y
ad: P = (x+1/x)² + (y+1/y)² ≥ [x+1/x + y+1/y]²/2 = [(x+y) + (x+y)/xy]²/2 (*)
bđt côsi: 1 = x+y ≥ 2√(xy) => 1 ≥ 4xy => 1/xy ≥ 4
thay vào (*): P ≥ [1 + 1/xy]²/2 ≥ [1 + 4]²/2 = 25/2 (đpcm), dấu "=" khi x = y = 1/2
Đặt \(P=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
Áp dụng bđt bunhiacopxki ta có:
\(\left[\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\right]\left(1^2+1^2\right)\ge\left[\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)\right]^2\)
\(\Leftrightarrow2P\ge\left(1+\frac{1}{x}+\frac{1}{y}\right)^2\)(1)
Ta có BĐT:\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\)( bạn tự CM = cách chuyển vế nhé )
Áp dụng bđt cô si cho 2 số dương x,y ta có:
\(\sqrt{xy}\le\frac{x+y}{2}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}\ge4\)(2)
Thay (2) vào (1) ta được:
\(2P\ge25\)
\(\Rightarrow P\ge\frac{25}{2}\left(đpcm\right)\)
bn ơi bn vào link này nhek bài thứ 2 từ cuối lên nhek https://diendantoanhoc.net/topic/151447-cho-x3-y3-3x2-y2-4xy-4-0-xy0-t%C3%ACm-max-frac1x-frac1y/
\(a)\)\(x+xy+y=-6\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=-5\)
Lập bảng xét TH ra là xong
\(b)\) CM : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
Xin thêm 1 slot đi hok về làm cho -,-
\(b)\) CM : \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(x+y\right)^2\) ( bđt Cauchy-Schawarz dạng Engel )
Ta có :
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}+2017\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}+2017=\frac{\left(2+\frac{4}{2}\right)^2}{2}+2017=2025\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)
Bài này còn có cách khác là sử dụng tính chất tổng 2 phân số nghịch đảo nhau nhá :))
Chúc bạn học tốt ~
Đặt \(P=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=x+y+\frac{2}{x+y}\) (do \(xy=1\) )
Khi đó, ta có thể biến đổi biểu thức \(P\) quay về dạng có thể dùng bđt \(AM-GM\) hay nói cách khác, đây là số mệnh của nó đã được an bài đằng sau cách cửa biết nói.
\(P=\left[\left(x+y\right)+\frac{4}{x+y}\right]-\frac{2}{x+y}\ge2\sqrt{\left(x+y\right).\frac{4}{\left(x+y\right)}}=4-\frac{2}{x+y}\)
Mặt khác, do \(x+y\ge2\sqrt{xy}=2\) (theo bđt \(AM-GM\) cho hai số thực \(x,y\)không âm)
nên \(-\frac{1}{x+y}\ge-\frac{1}{2}\) hay nói cách khác, \(-\frac{2}{x+y}\ge-1\)
Do đó, \(P\ge4-1=3\) (đpcm)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x,y>0\\xy=1\\x=y\end{cases}\Leftrightarrow}\) \(x=y=1\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\ge\frac{\left(1+\frac{4}{x+y}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)
=> đpcm . Dấu "=" xảy ra <=> x = y = 1/2
Đặt \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(=x^2+\frac{1}{x^2}+2+y^2+\frac{1}{y^2}+2\)
\(=x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}+4\)
Áp dụng BĐT Co-si , có :
\(x^2+y^2\ge2xy\)
\(\Rightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy\)
\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Có \(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\ge\frac{8}{\left(x+y\right)^2}\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}\ge8\)
\(\Rightarrow A\ge\frac{1}{2}+8+4\)
\(\Rightarrow A\ge\frac{25}{2}\)