Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa lại đề: cho x, y, z dương thỏa mãn \(\dfrac{1}{xy}+\dfrac{1}{xz}+\dfrac{1}{yz}=1\)
Chứng minh \(A=\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\le\dfrac{3}{2}\)
Giải:
Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\Rightarrow ab+bc+ac=1\)
\(\Rightarrow A=\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{bc}\left(1+\dfrac{1}{a^2}\right)}}+\dfrac{\dfrac{1}{b}}{\sqrt{\dfrac{1}{ac}\left(1+\dfrac{1}{b^2}\right)}}+\dfrac{\dfrac{1}{a}}{\sqrt{\dfrac{1}{ab}\left(1+\dfrac{1}{c^2}\right)}}\)
\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+1}}+\sqrt{\dfrac{ac}{b^2+1}}+\sqrt{\dfrac{ab}{c^2+1}}\)
\(\Rightarrow A=\sqrt{\dfrac{bc}{a^2+ab+bc+ac}}+\sqrt{\dfrac{ac}{b^2+ab+bc+ac}}+\sqrt{\dfrac{ab}{c^2+ab+bc+ac}}\)
\(\Rightarrow A=\sqrt{\dfrac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{ac}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\)
\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}+\dfrac{a}{a+b}+\dfrac{c}{b+c}+\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)
\(\Rightarrow A\le\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{a+c}{a+c}\right)=\dfrac{3}{2}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\) hay \(x=y=z=\sqrt{3}\)
Đề bài này có rất nhiều vấn đề, đầu tiên không có điều kiện x, y, z gì cả? Dương? Â? Bằng 0? Khác 0?
Sau nữa là chiều của BĐT cũng có vấn đề nốt, mình thử với \(x=y=2;z=\dfrac{4}{3}\) thì vế trái ra \(\dfrac{2+\sqrt{30}}{5}\) mà theo casio cho biết thì số này nhỏ hơn \(\dfrac{3}{2}\) , vậy BĐT cũng sai luôn
Bạn xem lại đề nhé :)
Thay 1 bằng xy + yz + zx được :
\(1+y^2=xy+yz+zx+y^2=x\left(y+z\right)+y\left(y+z\right)=\left(x+y\right)\left(y+z\right)\)
Tương tự : \(1+x^2=\left(x+y\right)\left(x+z\right)\), \(1+z^2=\left(x+z\right)\left(z+y\right)\)
Suy ra \(Q=x\sqrt{\frac{\left(x+y\right)\left(y+z\right).\left(x+z\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(x+y\right)\left(x+z\right).\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(x+z\right).\left(x+y\right)\left(y+z\right)}{\left(x+z\right)\left(z+y\right)}}\)
\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}=x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)
\(=2\left(xy+yz+zx\right)=2\)(vì x,y,z > 0)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{y}=b\end{matrix}\right.\), ta có:
\(A=\left[\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\times\dfrac{2}{a+b}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\)\(\times\dfrac{a^3+ab^2+a^2b+b^3}{ab^3+a^3b}\)
\(=\left(\dfrac{b+a}{ab}\times\dfrac{2}{a+b}+\dfrac{b^2+a^2}{a^2b^2}\right)\)\(\times\dfrac{a^2\left(a+b\right)+b^2\left(a+b\right)}{ab\left(a^2+b^2\right)}\)
\(=\dfrac{2ab+b^2+a^2}{a^2b^2}\times\dfrac{\left(a+b\right)\left(a^2+b^2\right)}{ab\left(b^2+a^2\right)}\)
\(=\dfrac{\left(a+b\right)^3}{a^3b^3}\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{\left(xy\right)^3}}\)
Lời giải:
a)
Với \(x>1\Rightarrow x-1>0\). Áp dụng BĐT AM-GM:
\(x=(x-1)+1\geq 2\sqrt{x-1}\)
\(\Rightarrow \frac{\sqrt{x-1}}{x}\leq \frac{\sqrt{x-1}}{2\sqrt{x-1}}=\frac{1}{2}\) (đpcm)
Dấu bằng xảy ra ki \(x-1=1\Leftrightarrow x=2\)
b) Trước tiên, ta có bđt phụ sau:
\(x^3+y^3\geq xy(x+y)\)
\(\Leftrightarrow (x-y)^2(x+y)\geq 0\) (luôn đúng với mọi \(x,y>1\) )
Do đó, \(\frac{x^3+y^3-(x^2+y^2)}{(x-1)(y-1)}\geq \frac{xy(x+y)-x^2-y^2}{(x-1)(y-1)}\geq 8\)
\(\Leftrightarrow xy(x+y)-(x^2+y^2)\geq 8(x-1)(y-1)\)
\(\Leftrightarrow x^2(y-1)+y^2(x-1)-8(x-1)(y-1)\geq 0\)
\(\Leftrightarrow (y-1)[x^2-4(x-1)]+(x-1)[y^2-4(y-1)]\geq 0\)
\(\Leftrightarrow (y-1)(x-2)^2+(x-1)(y-2)^2\geq 0\)
(luôn đúng với mọi \(x,y>1\) )
Do đó ta có đpcm
Dấu bằng xảy ra khi \(x=y=2\)
Lời giải:
Từ \(xy+x+y=1\Rightarrow \left\{\begin{matrix} x^2+1=x^2+xy+x+y=x(x+y)+(x+y)=(x+1)(x+y)\\ y^2+1=y^2+xy+x+y=y(x+y)+(x+y)=(y+1)(x+y)\end{matrix}\right.\)
Mà \(xy+x+y=1\Rightarrow x(y+1)+(y+1)=2\Rightarrow (x+1)(y+1)=2\)
Do đó:
\(x\sqrt{\frac{2(y^2+1)}{x^2+1}}+y\sqrt{\frac{2(x^2+1)}{y^2+1}}+\sqrt{\frac{(x^2+1)(y^2+1)}{2}}\)
\(=x\sqrt{\frac{(x+1)(y+1)(y+1)(x+y)}{(x+1)(x+y)}}+y\sqrt{\frac{(x+1)(y+1)(x+1)(x+y)}{(y+1)(x+y)}}+\sqrt{\frac{(x+1)(x+y)(y+1)(x+y)}{(x+1)(y+1)}}\)
\(=x\sqrt{(y+1)^2}+y\sqrt{(x+1)^2}+\sqrt{(x+y)^2}\)
\(=x(y+1)+y(x+1)+x+y=2xy+2x+2y=2(xy+x+y)=2.1=2\)
Tick cái nhẹ cho cô loạn thông báo :))