Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+2=\frac{4}{\left(x+y\right)^2}+2=6\)
Dấu "=" xảy ra khio x=y=1/2
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
Bổ đề: \(2xy\le x^2+y^2\)
\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}=\frac{1}{x^2+y^2}+\frac{4}{2xy}\ge\frac{1}{x^2+y^2}+\frac{4}{x^2+y^2}=\frac{5}{x^2+y^2}\ge5\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{\sqrt{2}}\)
\(A=\frac{1}{x^2+y^2}+\frac{5}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{9}{2xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{9}{2\left(\frac{x+y}{2}\right)^2}\)
nên \(A\ge4+9.2=22\)
Dấu bằng xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)
Đặt xy = a .
Ta có x + y = 1 => x^3 + y^3 = 1 - 3xy ( mũ 3 hai vế )
* Ta có a = xy \(\le\) \(\frac{\left(x+y\right)^2}{4}\) = \(\frac{1}{4}\)
=> P = \(\frac{1}{1-3xy}\)+\(\frac{1}{xy}\)= \(\frac{1-2a}{a-3a^2}\).
Để tìm min P thì ta tìm max \(\frac{1}{P}\)= Q <=> Q = \(\frac{a-3a^2}{1-2a}\)
Đặt A=(a-3a^2 )/(1-2a)
<=> A-2Aa=a-3a^2
<=> 3a^2 -a(1+2A)+A=0
Giải delta >=0 là 1 biểu thức theo A
từ đó tìm được min và max A
Ta có \(x^2+y^2\ge2xy\)=>\(xy\le\frac{1}{2}\)
\(\frac{1}{A}=\frac{1}{-2xy}-\frac{1}{2}\le-1-\frac{1}{2}=-\frac{3}{2}\)
=> \(A\ge-\frac{2}{3}\)
\(MinA=-\frac{2}{3}\)khi \(x=y=\frac{\sqrt{2}}{2}\)
Trần Phúc Khang: bài này cần gì phải làm phức tạp vậy a
c/m: \(xy\le\frac{1}{2}\)( như bài Trần Phúc Khang)
Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)
\(A=\frac{-2xy}{1+xy}\ge\frac{-2.\frac{1}{2}}{1+\frac{1}{2}}=-\frac{1}{\frac{3}{2}}=-\frac{2}{3}\)
Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)
KL:.............................
Đặt \(\hept{\begin{cases}\sqrt{2x+3}=a\left(a>0\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}}\)
Thì ta có
\(\frac{b^2}{a^2}=\frac{a+1}{b+1}\)
\(\Leftrightarrow b^3+b^2=a^3+a^2\)
\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2\right)+\left(b-a\right)\left(b+a\right)=0\)
\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2+b+a\right)=0\)
Mà \(\left(b^2+ab+a^2+b+a\right)>0\)
\(\Rightarrow a=b\)
\(\Rightarrow2x+3=y\)
Thế vào Q ta được
\(Q=2x^2-5x-12=\left(2x^2-\frac{2x\times\sqrt{2}\times5}{2\sqrt{2}}+\frac{25}{8}\right)-\frac{121}{8}\)
\(=\left(\sqrt{2}x-\frac{5}{2\sqrt{2}}\right)^2-\frac{121}{8}\ge\frac{-121}{8}\)
Ta có : \(A=xy+\frac{1}{xy}=\left(16xy+\frac{1}{xy}\right)-15xy\)
Áp dụng bất đẳng thức Cauchy , ta có :
\(16xy+\frac{1}{xy}\ge2.\sqrt{16xy.\frac{1}{xy}}=8\)
Suy ra \(A\ge8-15xy\)
Ta lại có \(xy\le\frac{\left(x+y\right)^2}{4}\)
<=> \(15xy\le\frac{15.1}{4}=\frac{15}{4}\)
<=> \(-15xy\ge\frac{15}{4}\)
Suy ra \(A\ge8-\frac{15}{4}=\frac{17}{4}\)
Đẳng thức xảy ra <=> x = y = \(\frac{1}{2}\)