Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(2x^2+3y^2=7xy\)
\(\Leftrightarrow 2x^2-7xy+3y^2=0\)
\(\Leftrightarrow 2x^2-6xy-xy+3y^2=0\)
\(\Leftrightarrow 2x(x-3y)-y(x-3y)=0\)
\(\Leftrightarrow (x-3y)(2x-y)=0\Rightarrow \left[\begin{matrix} x=3y\\ x=\frac{y}{2}\end{matrix}\right.\)
Nếu $x=3y$:
\(P=-3xy+6y-1=-3.3y.y+6y-1=-9y^2+6y-1=-(9y^2-6y+1)\)
\(=-(3y-1)^2\leq 0, \forall y>0\)
Nếu $x=\frac{y}{2}$:
\(P=-3.\frac{y}{2}.y+6y-1\). Với $y>0$ thì $P$ trong trường hợp này vẫn có thể nhận giá trị dương.
Do đó bạn xem lại đề bài.
Tìm các số x,y nguyên dương thoả mãn điều kiện:
a)\(x^2—3x+y^2-6y+10=0\)
b)\(x^2-3y^2+2xy-2x-10y+4=0\)
Ta có x2 - 3xy + 2y2 = 0
<=> x2 - xy - 2xy + 2y2 = 0
<=> x(x - y) - 2y(x - y) = 0
<=> (x - y)(x - 2y) = 0
<=> \(\orbr{\begin{cases}x-y=0\\x-2y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=y\\x=2y\end{cases}}}\)
*) Khi x = y
Vì x > y > 0 => x \(\ne y\)(loại)
* Khi x = 2y
=> x - y = 2y - y
=> y > 0 (Vì x - y > 0) (tm)
Với x = 2y ta có A = \(\frac{6x+16y}{5x-3y}=\frac{6.2y+16.y}{5.2y-3y}=\frac{28y}{7y}=4\)
Ta có : x2 +2y2 -3xy=0
<=> x2 - 2xy + y2 + y2 -xy =0
<=> (x - y)2 + y(y - x) =0
<=> (y - x)2 + y(y - x) =0
<=> (y - x)(y - x + y) =0
<=> y=x (vô lí ) hoặc x= 2y (thỏa mãn)
Thay x=2y vào A ta đc
A=\(\frac{12y+16y}{10y-3y}=\frac{28y}{7y}\)
A= 4
\(4x^2-9xy-9y^2=0\)
\(\Leftrightarrow\left(x-3y\right)\left(4x+3y\right)=0\)
làm nốt
\(x^2-3xy+\frac{9}{4}y^2=9\) \(\Rightarrow\left(x-\frac{3}{2}y\right)^2=9\)\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{2}y=3\\x-\frac{3}{2}y=-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=3+\frac{3}{2}y\\x=\frac{3}{2}y-3\end{cases}}\)
Th1: Thay \(x=3+\frac{3}{2}y\) vào 2x - 3y + 1
Ta có: \(2\left(3+\frac{3}{2}y\right)-3y+1=6+3y-3y+1=7\)
Th2: Thay \(x=\frac{3}{2}y-3\) vào 2x - 3y + 1
Ta có: \(2\left(\frac{3}{2}y-3\right)-3y+1=3y-6-3y+1=-5\)
xin nhá xin nhá =))
Áp dụng bất đẳng thức Cauchy-Schwarz và giả thiết x+y=1 ta có :
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}=\frac{\left[2\left(x+y\right)+\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2}{2}\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+4\right)^2}{2}=18\)
Đẳng thức xảy ra <=> x=y=1/2
Vậy ...
Không ý t nói là nếu \(\hept{\begin{cases}a^2=0,5\\b^2=0,5\\c^2=2\end{cases}}\)
Thì \(a\left(a-1\right)2=\sqrt{0,5}\left(\sqrt{0,5}-1\right)2=-0,414\ge0\)là sai ấy
Cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=3\) . Chứng minh rằng:
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}>3\)
Ta thấy 0 < a,b,c < 2
Ta có:
\(\frac{1}{2-a}\ge\frac{a^2+1}{2}\) ⇔ a( a−1)2 \(\ge\)0
Tương tự với các cái tương tự, ta được:
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge\frac{a^2+1+b^2+1+c^2+1}{2}=3\left(\text{đ}pcm\right)\)
Dấu = khi a=b=c=1
đúng không ?