Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(x+y+z\ge3\sqrt[3]{xyz}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)
Nhân theo vế 2 BĐT trên ta có:
\(VT\ge3^2\cdot\sqrt[3]{xyz\cdot\frac{1}{xyz}}=9=VP\)
Xảy ra khi \(a=b=c\)
Áp dụng BĐT Cauchy, ta có:
\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)
\(\Rightarrow VT\ge\frac{2}{xy}+\frac{1}{x^2+y^2}\)
\(\Leftrightarrow VT\ge\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{3}{2xy}\)
\(\Rightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{3}{\frac{\left(x+y\right)^2}{2}}\)
\(\Leftrightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{6}{\left(x+y\right)^2}=\frac{10}{\left(x+y\right)^2}\)
Dấu = xảy ra khi \(x=y>0\)
Vậy \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{x^2+y^2}\ge\frac{10}{\left(x+y\right)^2}\) với \(\forall x;y>0\)
Áp dụng BĐT AM-GM ta có:
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\)
\(=\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}=\frac{\left(x+y+\frac{x+y}{xy}\right)^2}{2}\)
Lại có: \(1=x+y\ge2\sqrt{xy}\Rightarrow1\ge4xy\Rightarrow\frac{1}{xy}\ge4\)
Khi đó \(A\ge\frac{\left(1+\frac{1}{xy}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)
Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)
Ta có:
\(\left(\frac{x}{y}+\frac{y}{x}\right)^2=\frac{x^2}{y^2}+2.\frac{x}{y}.\frac{y}{x}+\frac{y^2}{x^2}=\left(\frac{x}{y}-\frac{y}{x}\right)^2+4.\frac{x}{y}.\frac{y}{x}\)
\(=\left(\frac{x}{y}-\frac{y}{x}\right)^2+4\ge4\) với mọi x y >0
Vì x, y >0 => \(\frac{x}{y}+\frac{y}{x}>0\) mà \(\left(\frac{x}{y}+\frac{y}{x}\right)^2\ge4\)
=> \(\frac{x}{y}+\frac{y}{x}\ge2>\frac{1}{2}\)với mọi x, y >0
"=" xảy ra <=> x =y
Em kiểm tra lại đề bài nha.
Áp dụng BĐT BSC và BĐT Cosi:
\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge17\left(x+y+z\right)+\frac{2.\left(1+1+1\right)^2}{x+y+z}\)
\(=17\left(x+y+z\right)=\frac{18}{x+y+z}\)
\(=17\left(x+y+z\right)=\frac{17}{x+y+z}+\frac{1}{x+y+z}\)
\(\ge2\sqrt{17\left(x+y+z\right).\frac{17}{x+y+z}}+\frac{1}{1}\)
\(=35\)
\(\Rightarrow17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge35\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)
Áp dụng bất đẳng thức AM-GM kết hợp giả thiết x + y + z ≤ 1 ta có :
\(17\left(x+y+z\right)+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=17x+17y+17z+\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\)
\(=\left(18x+\frac{2}{x}\right)+\left(18y+\frac{2}{y}\right)+\left(18z+\frac{2}{z}\right)-\left(x+y+z\right)\)
\(\ge2\sqrt{18x\cdot\frac{2}{x}}+2\sqrt{18y\cdot\frac{2}{y}}+2\sqrt{18z\cdot\frac{2}{z}}-1=12\cdot3-1=35\)( đpcm )
Dấu "=" xảy ra <=> x=y=z=1/3
a/ Bạn cứ khai triển biến đổi tương đương thôi (mà làm biếng lắm)
b/ Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)
\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)\ge\frac{1}{2}.3\sqrt[3]{xyz}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
cảm ơn bạn nhưng nạ có thể giải nốt cậu a hộ mình đc ko
theo bất đẳng thức côsi thì
\(x+\frac{1}{x}\ge2\sqrt{x\times\frac{1}{x}}=2\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2\ge2^2=4\)(1)
tương tự \(\left(y+\frac{1}{y}\right)^2\ge4\)(2)
Từ (1),(2)\(\Rightarrow\)đpcm
Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
\(x+\frac{1}{(x-y).y}=(x-y)+y+\frac{1}{(x-y).y}\geq 3\sqrt[3]{(x-y).y.\frac{1}{(x-y).y}}=3\)
Ta có đpcm.
Dấu "=" xảy ra khi \(x-y=y=\frac{1}{(x-y).y}\) hay $x=2; y=1$