\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 2 2020

Ta chứng minh BĐT phụ sau với số dương:

\(\frac{a^4+b^4}{a^3+b^3}\ge\frac{a+b}{2}\Leftrightarrow2a^4+2b^4\ge a^4+b^4+a^3b+ab^3\)

\(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

Áp dụng vào bài toán:

\(\Rightarrow VT\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=2008\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=\frac{2008}{3}\)

20 tháng 12 2017

Trước tiên chứng minh:

\(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(đúng)

\(\Rightarrow2\left(a^4+b^4\right)\ge a^4+b^4+a^3b+ab^3=\left(a+b\right)\left(a^3+b^3\right)\)

Áp dụng bài toán được

\(P=\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\)

\(\ge\frac{1}{2}\left(x+y+y+z+z+x\right)=x+z+y=2018\)

23 tháng 11 2019

Ta có:

\(x^4+y^4\ge x^3y+xy^3\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3=\left(x^3+y^3\right)\left(x+y\right)\)

\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

Σ\(\frac{x^4+y^4}{x^3+y^3}\)\(\ge x+y+z=2008\)

30 tháng 5 2020

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

24 tháng 9 2020

Trước hết ta sẽ chứng minh bổ đề phụ sau, với mọi a,b dương ta có: 

\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

Thật vậy  biến đổi tương đương ta đưa về \(\left(a-b\right)^2\left(a^2+ab+b^2\right)=0\)

BĐT này luôn đúng, thế thì

\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

\(\Rightarrow\left(a^4+b^4\right)\ge\frac{\left(a+b\right)\left(a^3+b^3\right)}{2}\)

\(\frac{a^4+b^4}{a^3+b^3}\ge\frac{a+b}{2}\)

Như vậy ta có:

\(\hept{\begin{cases}\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\\\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2}\\\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\end{cases}}\)

\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=1\)

Dấu '=' xảy ra khi x=y=z=1/3

24 tháng 9 2020

Đặng Ngọc Quỳnh  không cần a,b rồi suy ra x,y, quá lòng vòng

Bạn tham khảo cách làm tại đây

 Câu hỏi của Pham Quoc Cuong - Toán lớp 8 - Học toán với OnlineMath

3 tháng 10 2020

Áp dụng BĐT Schwars và BĐT AM - GM:
\(\frac{x}{x^4+1+2xy}\le\frac{1}{4}x\left(\frac{1}{x^4+1}+\frac{1}{2xy}\right)=\frac{1}{4}\left(\frac{x}{x^4+1}+\frac{1}{2y}\right)\le\frac{1}{4}\left(\frac{x}{2x^2}+\frac{1}{2y}\right)=\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{2y}\right)\).

Tương tự rồi cộng vế với vế ta được:

\(\frac{x}{x^4+1+2xy}+\frac{y}{y^4+1+2yz}+\frac{z}{z^4+1+2zx}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{2y}+\frac{1}{2y}+\frac{1}{2z}+\frac{1}{2z}+\frac{1}{2x}\right)=\frac{1}{4}.3=\frac{3}{4}\left(đpcm\right)\)

NV
3 tháng 10 2020

Đặt vế trái là P

\(P\le\frac{x}{2x^2+2xy}+\frac{y}{2y^2+2yz}+\frac{z}{2z^2+2zx}=\frac{1}{2\left(x+y\right)}+\frac{1}{2\left(y+z\right)}+\frac{1}{2\left(z+x\right)}\)

\(P\le\frac{1}{8}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3}{4}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

12 tháng 2 2020

Bdt phu \(\frac{a^{n+2}+b^{n+2}}{a^{n+1}+b^{n+1}}\ge\frac{a^{n+1}+b^{n+1}}{a^n+b^n}\)

cai nay ban tu chung minh nha , nhan cheo rut gon la ra

dau = khi a=b

Ap dung ta co \(\frac{x^4+y^4}{x^3+y^3}\ge\frac{x^3+y^3}{x^2+y^2}\ge\frac{x^2+y^2}{x+y}\ge\frac{x+y}{2}\)

tuong tu va suy ra \(A\ge\frac{x+y+y+z+z+x}{2}=\frac{2\left(x+y+z\right)}{2}=x+y+z=2015\)

Vay Amin = 2015 <=> x=y=z=2015/3

chuc ban hoc tot