Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu thức B chỉ có max, ko có min:
Từ giả thiết suy ra \(y^2< 15;z^2< 20\)
\(25x^2+10xyz+20y^2+15z^2=300\)
\(\Leftrightarrow\left(5x+yz\right)^2=y^2z^2-20y^2-15z^2+300\)
\(\Leftrightarrow\left(5x+yz\right)^2=\left(15-y^2\right)\left(20-z^2\right)\le\frac{1}{4}\left(35-y^2-z^2\right)^2\)
\(\Leftrightarrow5x+yz\le\frac{1}{2}\left(35-y^2-z^2\right)\)
\(\Leftrightarrow10x\le35-\left(y+z\right)^2\Rightarrow x\le\frac{35-\left(y+z\right)^2}{10}\)
\(\Rightarrow B\le\frac{35-\left(y+z\right)^2}{10}+y+z=\frac{35-\left(y+z\right)^2+10\left(y+z\right)}{10}=\frac{60-\left(y+z-5\right)^2}{10}\le6\)
\(\Rightarrow B_{max}=6\) khi \(\left(x;y;z\right)=\left(1;2;3\right)\)
https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/
bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo
Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)
Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)
\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)
Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)
\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)
\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)
\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)
Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1
Từ giả thiết ta có: \(x+y+z=xyz\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
Ta có:
\(M=\frac{\left(x-1\right)+\left(y-1\right)}{y^2}-\frac{1}{y}+\frac{\left(y-1\right)+\left(z-1\right)}{z^2}-\frac{1}{z}+\frac{\left(z-1\right)+\left(x-1\right)}{x^2}-\frac{1}{x}\)
\(=\left[\frac{\left(x-1\right)}{y^2}+\frac{\left(x-1\right)}{x^2}\right]+\left[\frac{y-1}{y^2}+\frac{y-1}{z^2}\right]+\left[\frac{z-1}{z^2}+\frac{z-1}{x^2}\right]-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\left(x-1\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(y-1\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)+\left(z-1\right)\left(\frac{1}{z^2}+\frac{1}{x^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\ge\frac{2\left(x-1\right)}{xy}+\frac{2\left(y-1\right)}{yz}+\frac{2\left(z-1\right)}{zx}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-2\)
Lại có:
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt{3}\)
\(\Rightarrow M\ge\sqrt{3}-2\)
Dấu bằng xảy ra khi x=y=z=\(\sqrt{3}\)
Áp dụng BĐT Cô-si ta có:
\(2x^2+3xy+4y^2\ge3\sqrt[3]{2x^2\cdot3xy\cdot4y^2}=3\sqrt[3]{24x^3y^3}\Rightarrow\sqrt{2x^2+3xy+4y^2}\ge\sqrt{xy\cdot3\sqrt[3]{24}}\)
Tương tự: \(\sqrt{2y^2+3yz+4z^2}\ge\sqrt{yz\cdot3\sqrt[3]{24}}\); \(\sqrt{2z^2+3zx+4x^2}\ge\sqrt{zx\cdot3\sqrt[3]{24}}\)
Cộng theo vế 3 BĐT vừa tìm, ta được:
\(P\ge\sqrt{3\sqrt[3]{24}}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\sqrt{3\sqrt[3]{24}}=\sqrt[6]{648}\)
Dự đoán dấu bằng: \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
\(gt\Leftrightarrow5x^2+2yz.x+4y^2+3z^2-60\text{ (1)}\)
(1) là một pt bậc hai ẩn x
\(\Delta'=y^2z^2-5\left(4y^2+3z^2-60\right)=\left(15-y^2\right)\left(20-z^2\right)\)
Ta có: x, y, z > 0 nên từ giả thiết suy ra:
\(\hept{\begin{cases}60>4y^2\\60>3z^2\\4y^2+3z^2-60< 0\end{cases}}\)
nên (1) có: \(\hept{\begin{cases}\Delta'>0\\a.c=5\left(4y^2+3z^2-60\right)< 0\end{cases}}\)
Suy ra (1) có 2 nghiệm trái dấu. Do x > 0 nên ta chọn nghiệm dương, hay
\(x=\frac{-yz+\sqrt{15-y^2}.\sqrt{20-z^2}}{5}\)
Áp dụng bđt Côsi: \(x\le\frac{-yz+\frac{15-y^2+20-z^2}{2}}{5}=\frac{35-\left(y^2+z^2+2yz\right)}{10}=\frac{35}{10}-\frac{\left(y+z\right)^2}{10}\)
\(B=x+y+z\le-\frac{\left(y+z\right)^2}{10}+\left(y+z\right)+\frac{35}{10}\)
\(B\le-\frac{1}{10}\left[\left(y+z\right)^2-10\left(y+z\right)+5^2\right]+\frac{25}{10}+\frac{35}{10}\)
\(=-\frac{1}{10}\left(y+z-5\right)^2+6\le6\)
Với \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)thì giả thiết đúng và B = 6.
Vậy Max B = 6.
T chỉ tìm dươc giá trị lớn nhất thôi nhỏ nhất không biết