K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

\(\left|x-2\right|\ge0;y+5\ge0\Rightarrow\left|x-2\right|+\left|y+5\right|\ge0\)

\(\Rightarrow\left|x-2\right|+\left|y+5\right|-15\ge-15\)

Dấu "=" xảy ra tại x=2;y=-5

11 tháng 2 2020

Ta có: A= \(\left|x-2\right|+\left|y+5\right|-15\)

\(\hept{\begin{cases}\left|x-2\right|\ge0\\\left|y+5\right|\ge0\end{cases}\Rightarrow\left|x-2\right|+\left|y+5\right|-15\ge-15}\)

Để A nhỏ nhất thì Min (A) = -15 <=> x=2; y= -5

(Min là giá trị nhỏ nhất)

A= |x+2|+5

có |x+2| > hoặc = 0

vậy |x+2| + 5 > hoặc = 5

nên GTNN A=5 <=> x+2=5

                                  x=5-2

                                  x=3 hoặc -7

nha

28 tháng 2 2019

ta có |x+19|+|y-5|+1980 >1980

<=>|x+19|+|y-5|>0

dấu"="chỉ xảy ra <=>|x+19|=0vs|y-5|=0<=>x+19=0vsy-5=0

                                   <=>x=-19,y=5

                                   

11 tháng 1 2017

bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy

a)Ta thấy: \(\left|x-5\right|\ge0\)

\(\Rightarrow-\left|x-5\right|\le0\)

\(\Rightarrow1000-\left|x-5\right|\le1000\)

\(\Rightarrow A\le1000\)

Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)

Vậy \(Max_A=1000\) khi \(x=5\)

b)Ta thấy: \(\left|y-3\right|\ge0\)

\(\Rightarrow\left|y-3\right|+50\ge50\)

\(\Rightarrow B\ge50\)

Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)

Vậy \(Min_B=50\) khi \(y=3\)

c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)

\(\Rightarrow C\ge-1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

11 tháng 1 2017

Khó vậy bạn

Mình mới lớp 7

Ai cho mình xin k nhé

Thanks

8 tháng 1 2019

Khó thế!!!

8 tháng 1 2019

\(1a,A=\left|5-x\right|+\left|y-2\right|-3\)

Vì \(\left|5-x\right|\ge vs\forall x,\left|y-2\right|\ge vs\forall y\Rightarrow A\ge3\)

Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|5-x\right|=0\\\left|y-2\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}5-x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\)

Vậy \(A_{min}=3\Leftrightarrow x=5,y=2\)

\(b,B=\left|4-2x\right|+y^2+\left(2-1\right)^2-6\)

\(=\left|4-2x\right|+y^2-5\)

Vì \(\left|4-2x\right|\ge vs\forall x;y^2\ge0vs\forall y\Rightarrow B\ge-5\)

Dấu \("="\) xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4-2x\right|=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4-2x=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)

Vậy \(B_{min}=-5\Leftrightarrow x=2,y=0\)

\(c,C=\frac{1}{2}-\left|x-2\right|\) ( bn xem lại đề nhé )

17 tháng 2 2020

\(N=\left|x+2020\right|-5\)

Ta có : \(\left|x+2020\right|\ge0\Rightarrow N\ge-5\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x+2020\right|=0\Leftrightarrow x+2020=0\Leftrightarrow x=-2020\)

Vậy \(N_{min}=-5\Leftrightarrow x=-2020\)