Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = x6 + y6 = (x2 + y2)(x4 - x2 y2 + y4)
= (x2 + y2)2 - 3x2 y2 \(\ge1-3×\frac{\left(x^2+y^2\right)^2}{4}=1-\frac{3}{4}=\frac{1}{4}\)
Đạt được khi x2 = y2 = \(\frac{1}{2}\)
\(a,A=x^2+y^2\\=x^2-2xy+y^2+2xy\\=(x-y)^2+2xy\\=2^2+2\cdot1\\=4+2\\=6\)
\(b,x+y=1\\\Leftrightarrow (x+y)^3=1^3\\\Leftrightarrow x^3+3x^2y+3xy^2+y^3=1\\\Leftrightarrow x^3+3xy(x+y)+y^3=1\\\Leftrightarrow x^3+3xy\cdot1+y^3=1\\\Rightarrow A=1\)
a) Ta có:
\(x-y=2\)
\(\Rightarrow\left(x-y\right)^2=2^2\)
\(\Rightarrow x^2-2xy+y^2=4\)
Mà: \(xy=1\)
\(\Rightarrow\left(x^2+y^2\right)-2\cdot1=4\)
\(\Rightarrow x^2+y^2=4+2\)
\(\Rightarrow x^2+y^2=6\)
b) Ta có:
\(x+y=1\)
\(\Rightarrow\left(x+y\right)^3=1^3\)
\(\Rightarrow x^3+3x^2y+3xy+y^3=1\)
\(\Rightarrow x^3+3xy\left(x+y\right)+y^3=1\)
Mà: x + y = 1
\(\Rightarrow x^3+3xy\cdot1+y^3=1\)
\(\Rightarrow x^3+3xy+y^3=1\)
\(x+y+4=0\Rightarrow\left\{{}\begin{matrix}y=-4-x\\x+y=-4\end{matrix}\right.\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-4\right)^3-3xy.\left(-4\right)=12xy-64\)
\(\Rightarrow P=2\left(12xy-64\right)+3\left(x^2+y^2\right)+10x\)
\(=24xy+3x^2+3y^2+10x-128\)
\(=24x\left(-4-x\right)+3x^2+3\left(-4-x\right)^2+10x-128\)
\(=-18x^2-62x-80=-18\left(x+\dfrac{31}{18}\right)^2-\dfrac{479}{18}\le-\dfrac{479}{18}\)
\(P_{max}=-\dfrac{479}{18}\) khi \(\left(x;y\right)=\left(-\dfrac{31}{18};-\dfrac{41}{18}\right)\)
Ta có \(x^2+y^2+xy+x=y-1\)
\(\Leftrightarrow2x^2+2y^2+2xy+2x-2y+2=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
\(\Rightarrow B=\left(-1+1-1\right)^{2023}\) \(=\left(-1\right)^{2023}\) \(=-1\)
ta có x^2+y^2=1 mà x^2;y^2 lớn hơn hoặc bằng 0
từ đó => x^2=1 và y^2=0 hoặc x^2=0 và y^2=1
=> x=1 và y=0 hoặc x=0 và y=1
Vậy gtln của A là 1 trong cả 2 trường hợp trên
thien tri nhỡ x^2=y^2=0,5
thì sao