Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 3x2+y2+2xy+4=7x+3y
<=> (x2 + 2xy + y2 ) - 3(x + y) + 2(x2 - 2x +1) + 2 = 0
<=> P2 - 3P + 9/4 + 2(x - 1)2 - 1/4 = 0
<=> (P - 3/2)2 = 1/4 - 2(x - 1)2
<=> P - 3/2 = 1/4 - 2(x - 1)2 hoặc P - 3/2 = 2(x - 1)2 - 1/4
Tương ứng với mỗi cái ta sẽ có GTLN, GTNN phần còn lại bạn giải nha
Ta có 3x
2+y
2+2xy+4=7x+3y
<=> (x
2 + 2xy + y
2
) - 3(x + y) + 2(x
2
- 2x +1) + 2 = 0
<=> P
2
- 3P + 9/4 + 2(x - 1)2
- 1/4 = 0
<=> (P - 3/2)2 = 1/4 - 2(x - 1)2
<=> P - 3/2 = 1/4 - 2(x - 1)2 hoặc P - 3/2 = 2(x - 1)2
- 1/4
Tương ứng với mỗi cái ta sẽ có GTLN, GTNN phần còn lại bạn giải nha
chúc cậu hok tốt @_@
-2A=2x2+6y2+4xy-20x-28y+36
=(x2+4xy+4y2)+(x2-20x+100)+2(y2-14y+49)-162
=(x+2y)2+(x-10)2+2(y-7)2-162\(\ge\)-162
=> A\(\le81\)
Dấu "=" xảy ra khi
Ta có :
\(x^2+3y^2+2xy-10x-14y+18=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)-10x-10y+25+\left(2y^2-4y+2\right)-9=0\)
\(\Leftrightarrow\left(x+y\right)^2-2.\left(x+y\right).5+25+2\left(y^2-2y+1\right)=9\)
\(\Leftrightarrow\left(x+y-5\right)^2+2\left(y-1\right)^2=9\)
Vì \(2\left(y-1\right)^2\ge0\forall y\)nên \(\left(x+y-5\right)^2\le9\)hay \(\left(M-5\right)^2\le9\)
\(\Rightarrow-3\le M-5\le3\Leftrightarrow2\le M\le8\)
- \(Min_M=2\)khi \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
- \(Max_M=8\)khi\(\hept{\begin{cases}x=7\\y=1\end{cases}}\)
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Mysterious Person
https://hoc24.vn/hoi-dap/question/655965.html