\(\frac{x^4+y^4}{2xy+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2016

Ta có :(a+b-c)2 \(\ge\) 0

<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)

<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)

<=>bc+ac-ab \(\le\frac{5}{6}< 1\)

<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)

<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)

24 tháng 12 2019

Ta co:

 \(9=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\Rightarrow-3\sqrt{2}\le x+y\le3\sqrt{2}\)

Dat \(\hept{\begin{cases}a=x+y\\b=xy\end{cases}\left(a\ne-3,-3\sqrt{2}\le a\le3\sqrt{2}\right)}\)

\(\Rightarrow a^2-2b=9\Leftrightarrow\frac{a^2}{2}-\frac{9}{2}=b\) 

\(\Rightarrow Q=\frac{b}{a+3}=\frac{a^2-9}{2a+6}=\frac{a-3}{2}=\frac{x+y-3}{2}\)

Xet \(0\le x+y\le3\sqrt{2}\)

\(\Rightarrow Q=\frac{x+y-3}{2}\le\frac{\sqrt{2\left(x^2+y^2\right)}-3}{2}=\frac{3\sqrt{2}-3}{2}\)  

Dau '=' xay ra khi \(x=y=\frac{3}{\sqrt{2}}\)

Xet \(-3\sqrt{2}\le x+y< 0\)

\(\Rightarrow Q=\frac{x+y-3}{2}\ge\frac{-3\sqrt{2}-3}{2}\)

Dau '=' xay ra khi \(x=y=-\frac{3}{\sqrt{2}}\)

16 tháng 5 2019

Ta có \(x^2+y^2\ge2xy\)=>\(xy\le\frac{1}{2}\)

\(\frac{1}{A}=\frac{1}{-2xy}-\frac{1}{2}\le-1-\frac{1}{2}=-\frac{3}{2}\)

=> \(A\ge-\frac{2}{3}\)

\(MinA=-\frac{2}{3}\)khi \(x=y=\frac{\sqrt{2}}{2}\)

16 tháng 5 2019

Trần Phúc Khang: bài này cần gì phải làm phức tạp vậy a

c/m: \(xy\le\frac{1}{2}\)( như bài Trần Phúc Khang)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)

\(A=\frac{-2xy}{1+xy}\ge\frac{-2.\frac{1}{2}}{1+\frac{1}{2}}=-\frac{1}{\frac{3}{2}}=-\frac{2}{3}\)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)

KL:.............................

 
15 tháng 12 2015

GTLN =3

GTNN = 1