Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\frac{x^2-16}{4x-x^2}=\frac{x^2-4^2}{x(4-x)}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)
b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+x+3x+3}{2(x+3)}=\frac{x(x+1)+3(x+1)}{2(x+3)}=\frac{(x+1)(x+3)}{2(x+3)}=\frac{x+1}{2}\)
c)
\(\frac{15x(x+y)^3}{5y(x+y)^2}=\frac{5.3.x(x+y)^2.(x+y)}{5y(x+y)^2}=\frac{3x(x+y)}{y}\)
d) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)
e) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7(x+y)}{-3(x+y)}=\frac{-7}{3}\)
f) \(\frac{x^2-xy}{3xy-3y^2}=\frac{x(x-y)}{3y(x-y)}=\frac{x}{3y}\)
g) \(\frac{2ax^2-4ax+2a}{5b-5bx^2}=\frac{2a(x^2-2x+1)}{5b(1-x^2)}=\frac{2a(x-1)^2}{5b(1-x)(1+x)}\)
\(=\frac{2a(x-1)}{5b(-1)(x+1)}=\frac{2a(1-x)}{5b(x+1)}\)
\(\Leftrightarrow\dfrac{\left(x^2-y^2\right)^2}{x^2y^2}\ge\dfrac{3\left(x-y\right)^2}{xy}\)
\(\Leftrightarrow\dfrac{\left[\left(x-y\right)\left(x+y\right)\right]^2}{x^2y^2}-\dfrac{3\left(x-y\right)^2}{xy}\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{\left(x+y\right)^2}{x^2y^2}-\dfrac{3}{xy}\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{x^2+y^2-xy}{x^2y^2}\right)\ge0\)( luôn đúng )
Ta có : \(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)
\(\Leftrightarrow\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2axby+2axcz+2bycz=a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)
\(\Leftrightarrow2axby+2axvz+2bycz=a^2y^2+b^2x^2+a^2z^2+c^2x^2+b^2z^2+c^2y^2\)
\(\Leftrightarrow a^2y^2+b^2x^2+a^2z^2+c^2x^2+b^2z^2+c^2y^2-2axby-2azcx-2bycz=0\)
\(\Leftrightarrow\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2azcx+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
Do \(\left(ay-bx\right)^2\ge0;\left(az-cx\right)^2\ge0;\left(bz-cy\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}ay-bx=0\\az-cx=0\\bz-cy=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay=bx\\az=cx\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{c}{z}=\dfrac{a}{x}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\left(đpcm\right)\)
:D
1)
a) \(\dfrac{5x}{10}=\dfrac{x}{2}\)
b) \(\dfrac{4xy}{2y}=2x\left(y\ne0\right)\)
c) \(\dfrac{21x^2y^3}{6xy}=\dfrac{7xy^2}{2}\left(xy\ne0\right)\)
d) \(\dfrac{2x+2y}{4}=\dfrac{2\left(x+y\right)}{4}=\dfrac{x+y}{2}\)
e) \(\dfrac{5x-5y}{3x-3y}=\dfrac{5\left(x-y\right)}{3\left(x-y\right)}=\dfrac{5}{3}\left(x\ne y\right)\)
f) \(\dfrac{-15x\left(x-y\right)}{3\left(y-x\right)}=-5x\dfrac{x-y}{y-x}=-5x\dfrac{x-y}{-\left(x-y\right)}\)
\(=-5x.\left(-1\right)=5x\left(x\ne y\right)\)
2)
a) Nhớ ghi ĐK vào nhá, lười quá :V\(\dfrac{x^2-16}{4x-x^2}=-\dfrac{\left(x-4\right)\left(x+4\right)}{x^2-4x}=\dfrac{\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)}=\dfrac{x+4}{x}\)
b) \(\dfrac{x^2+4x+3}{2x+6}=\dfrac{x^2+3x+x+3}{2\left(x+3\right)}=\dfrac{x\left(x+3\right)+\left(x+3\right)}{2\left(x+3\right)}\)
\(=\dfrac{\left(x+3\right)\left(x+1\right)}{2\left(x+3\right)}=\dfrac{x+1}{2}\)
c) \(\dfrac{15x\left(x+3\right)^3}{5y\left(x+y\right)^2}=\dfrac{3x\left(x+3\right)^3}{y\left(x+y\right)^2}\) ( câu này có gì đó sai sai )
d) \(\dfrac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\dfrac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)
\(=\dfrac{8\left(x-y\right)}{10\left(x-y\right)}=\dfrac{8}{10}=\dfrac{4}{5}\)
e) \(\dfrac{2x+2y+5x+5y}{2x+2y-5x-5y}=\dfrac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)
\(=\dfrac{7\left(x+y\right)}{-3\left(x+y\right)}=-\dfrac{7}{3}\)
2)
a) \(\dfrac{1}{x}.\dfrac{6x}{y}\)
\(=\dfrac{6x}{xy}\)
\(=\dfrac{6}{y}\)
b) \(\dfrac{2x^2}{y}.3xy^2\)
\(=\dfrac{2x^2.3xy^2}{y}\)
\(=\dfrac{6x^3y^2}{y}\)
\(=6x^3y\)
c) \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)
\(=\dfrac{15x.2y^2}{7y^3.x^2}\)
\(=\dfrac{30xy^2}{7x^2y^3}\)
\(=\dfrac{30}{7xy}\)
d) \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\)
\(=\dfrac{2x^2.y}{\left(x-y\right).5x^3}\)
\(=\dfrac{2y}{5x\left(x-y\right)}\)
Lời giải:
Ta có:
\(\frac{4x^2y^2}{(x^2+y^2)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\geq 3\)
\(\Leftrightarrow \frac{4x^2y^2}{(x^2+y^2)^2}-1+\frac{x^2}{y^2}+\frac{y^2}{x^2}-2\geq 0\)
\(\Leftrightarrow \frac{4x^2y^2-(x^2+y^2)^2}{(x^2+y^2)^2}+\left(\frac{x}{y}-\frac{y}{x}\right)^2\geq 0\)
\(\Leftrightarrow \frac{-(x^2-y^2)^2}{(x^2+y^2)^2}+\frac{(x^2-y^2)^2}{x^2y^2}\geq 0\)
\(\Leftrightarrow (x^2-y^2)^2\left(\frac{1}{x^2y^2}-\frac{1}{(x^2+y^2)^2}\right)\geq 0\)
\(\Leftrightarrow \frac{(x^2-y^2)^2(x^4+y^4+x^2y^2)}{x^2y^2(x^2+y^2)^2}\geq 0\) (luôn đúng)
Do đó ta có đpcm.
Dấu bằng xảy ra khi $x=y$
\(A=\dfrac{4x^2y^2}{\left(x^2+y^2\right)^2}+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\)
x,y khác 0
<=>\(A=\dfrac{4}{\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2}+\left(\dfrac{x}{y}\right)^2+\left(\dfrac{y}{x}\right)^2\)
\(A+2=\dfrac{4}{\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2}+\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2=m\)
\(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2=t;t\ge4\)
\(m=\dfrac{4}{t}+t\Leftrightarrow t^2-mt+4=0\)
f(t) có nghiệm t>= 4<=>\(\left\{{}\begin{matrix}m^2-16\ge0\\\dfrac{m+\sqrt{m^2-16}}{2}\ge4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left|m\right|\ge4\\m^2-16\ge m^2-16m+64\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left|m\right|\ge4\\m\ge5\end{matrix}\right.\) \(\Leftrightarrow A+2\ge5;A\ge3=>dpcm\)