K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 4 2018

Lời giải:

Ta có:

\(\frac{4x^2y^2}{(x^2+y^2)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\geq 3\)

\(\Leftrightarrow \frac{4x^2y^2}{(x^2+y^2)^2}-1+\frac{x^2}{y^2}+\frac{y^2}{x^2}-2\geq 0\)

\(\Leftrightarrow \frac{4x^2y^2-(x^2+y^2)^2}{(x^2+y^2)^2}+\left(\frac{x}{y}-\frac{y}{x}\right)^2\geq 0\)

\(\Leftrightarrow \frac{-(x^2-y^2)^2}{(x^2+y^2)^2}+\frac{(x^2-y^2)^2}{x^2y^2}\geq 0\)

\(\Leftrightarrow (x^2-y^2)^2\left(\frac{1}{x^2y^2}-\frac{1}{(x^2+y^2)^2}\right)\geq 0\)

\(\Leftrightarrow \frac{(x^2-y^2)^2(x^4+y^4+x^2y^2)}{x^2y^2(x^2+y^2)^2}\geq 0\) (luôn đúng)

Do đó ta có đpcm.

Dấu bằng xảy ra khi $x=y$

14 tháng 4 2018

\(A=\dfrac{4x^2y^2}{\left(x^2+y^2\right)^2}+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\)

x,y khác 0

<=>\(A=\dfrac{4}{\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2}+\left(\dfrac{x}{y}\right)^2+\left(\dfrac{y}{x}\right)^2\)

\(A+2=\dfrac{4}{\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2}+\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2=m\)

\(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2=t;t\ge4\)

\(m=\dfrac{4}{t}+t\Leftrightarrow t^2-mt+4=0\)

f(t) có nghiệm t>= 4<=>\(\left\{{}\begin{matrix}m^2-16\ge0\\\dfrac{m+\sqrt{m^2-16}}{2}\ge4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left|m\right|\ge4\\m^2-16\ge m^2-16m+64\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left|m\right|\ge4\\m\ge5\end{matrix}\right.\) \(\Leftrightarrow A+2\ge5;A\ge3=>dpcm\)