K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2016

ta có A=x2-2xy+y2=x2+2xy+y2-4xy=(x+y)2-4 x (-10)=32+40=49

          B=x2+y2=>B=x2+2xy+y2-2xy=(x+y)2-2 x (-10)=9+20=29

28 tháng 5 2016

 \(A=x^2+2xy+y^2-4xy\)

      \(=\left(x+y\right)^2-4xy\)

        = 49

\(B=x^2+2xy+y^2-2xy\)

\(=\left(x+y\right)^2-2xy\)

= 29

b) \(A+B=x^2+y^2+2x+3+2x^2+y^2+2x+1=3x^2+2y^2+4x+4\)

\(A-B=x^2+y^2+2x+3-2x^2-y^2-2x-1=-x^2+2\)

a) Ta có: \(A=x^2+y^2-2xy+2x+2xy+3\)

\(=x^2+y^2+2x-\left(2xy-2xy\right)+3\)

\(=x^2+y^2+2x+3\)

Ta có: \(B=2x^2+y^2-xy+2x+xy+1\)

\(=2x^2+y^2+2x+\left(xy-xy\right)+1\)

\(=2x^2+y^2+2x+1\)

3 tháng 3 2020

Ta có : \(x^3+2xy\left(x+y\right)+y^2+x^2+y^2+xy+2\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+2xy\left(x+y\right)+xy+2\)

\(=\left(-1\right)^3+3xy-2xy+xy-2xy+\left(-1\right)^2+2\)

\(=\left(-1\right)+1+2=2\)

10 tháng 8 2019

A = 5x(x - y) - y(5x - y)

A = 5x2 - 5xy - 5xy + y2

A = 5x2 - 10xy + y2 (1)

Thay x = -1; y = 3 vào (1), ta có:

5.(-1)2 - 10.(-1).3 + 32 = 44

B = 4y(x2 - 3xy + 3y2) - 2xy(2x - 6y - 3)

B = 4x2y - 12x2 + 12y3 - 4x2y + 12xy2 + 6xy

B = 12y3 + 6xy (1)

Thay x = 5; y = -1 vào (1), ta có:

12.(-1)3 + 6.5.(-1) = -42

C = 5x2(x - y2) + 3x(xy- y) - 5x3 

C = 5x3 - 5x2y2 + 3x2y2 - 3xy - 5x3 

C = -2x2y2 - 3xy (1)

Thay x = -2; y = -5 vào (1), ta có:

-2.(-2)2.(-5)2 - 3.(-2).(-5) = -230

D = 6x2(y- xy + 2x2y) - 3xy(2xy - x+ 4x3)

D = 6x2y2 - 6x3y + 12x4y - 6x2y2 + 3x3y - 12x4y

D = -3x3y (1)

Thay x = 11; y = -1 vào (1), ta có:

-3.113.(-1) = 3993

a: \(A=31x^2y^3-2xy^3+\dfrac{1}{4}x^2y^2+2\)

\(B=2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)

P=\(A+B=x^2y^2-x^2-3\)

\(A-B=62x^2y^3-4xy^3-\dfrac{1}{2}x^2y^2+x^2+7\)

b: Khi x=6 và y=-1/3 thì \(P=\left(6\cdot\dfrac{-1}{3}\right)^2-6^2-3=4-36-3=1-36=-35\)

17 tháng 4 2016

A=x^3y^2+(2xy-8xy)+(-5+6)+(-x^3y)+x^2

A=x^3y^2+(-6xy)+1+(-x^3y)+x^2

Bậc là 3

B=(2xy-5xy+12xy)+(-8+11)+x^2y^2+4x^2y

B=9xy+3+x^2y^2+4x^2y

Bậc là 2;thay x=-1,y=-1 vào A ta đc

cứ thế ban làm tiếp nha

a: \(A=x^3y^2\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+xy\left(2-1\right)+y-1=xy+y-1\)

Bậc là 2

b: Thay x=0,1 và y=-2 vào A, ta được:

\(A=-2\cdot0.1+\left(-2\right)-1=-0.2-1-2=-3.2\)

27 tháng 2 2022

\(a,A=2xy+\dfrac{1}{2}x^3y^2-xy-\dfrac{1}{2}x^3y^2+y-1\\ =\left(2xy-xy\right)+\left(\dfrac{1}{2}x^3y^2-1\dfrac{1}{2}x^3y^2\right)+y-1\\ =xy+y-1\)

Bậc: 2

b, Thay x=0,1 và y=-2 vào A ta có:

\(A=xy+y-1=0,1.\left(-2\right)+\left(-2\right)-1=-0,2-2-1=-3,2\)