Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(y^2+2019=y^2+xy+yz+zx=y\left(x+y\right)+z\left(x+y\right)=\left(y+z\right)\left(x+y\right)\)
\(x^2+2019=x^2+xy+yz+zx=x\left(x+y\right)+z\left(x+y\right)=\left(x+z\right)\left(x+y\right)\)
\(z^2+2019=z^2+xy+yz+xz=z\left(z+y\right)+x\left(y+z\right)=\left(z+x\right)\left(y+z\right)\)
Có \(P=x\sqrt{\frac{\left(y^2+2019\right)\left(z^2+2019\right)}{x^2+2019}}+y\sqrt{\frac{\left(z^2+2019\right)\left(x^2+2019\right)}{y^2+2019}}+z\sqrt{\frac{\left(x^2+2019\right)\left(y^2+2019\right)}{z^2+2019}}\)
=\(x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(z+y\right)}{\left(x+z\right)\left(y+x\right)}}+y\sqrt{\frac{\left(z+x\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(y+z\right)\left(x+y\right)}}+z\sqrt{\frac{\left(x+z\right)\left(x+y\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)
=\(x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
=\(x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)
=\(x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\) (vì x,y,z >0)
= xy+xz+xy+yz+xz+yz
=2(xy+xz+yz)=2.2019(vì xy+xz+yz=2019)
=4038
Vậy P=4038
Ta xét \(\left(x+\sqrt{x^2+1}\right)\left(x-\sqrt{x^2+1}\right)=x^2-\left(x^2+1\right)=-1.\)
Mà \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
\(\Rightarrow x-\sqrt{x^2+1}=-\left(y+\sqrt{y^2+1}\right)\)
\(\Leftrightarrow x+y=\sqrt{x^2+1}-\sqrt{y^2+1}.\)(1)
Xét \(\left(y+\sqrt{y^2+1}\right)\left(y-\sqrt{y^2+1}\right)=y^2-\left(y^2+1\right)=-1\)
Mà \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
\(\Rightarrow y-\sqrt{y^2+1}=-\left(x+\sqrt{x^2+1}\right).\)
\(\Leftrightarrow x+y=\sqrt{y^2+1}-\sqrt{x^2+1}\)(2)
Cộng 2 vế của (1) và (2) Ta được
\(2\left(x+y\right)=0\Leftrightarrow x=-y\)Thế vào A
\(A=x^{2019}+y^{2019}=\left(-y\right)^{2019}+y^{2019}=0\)
\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+\sqrt{x^2+1}}=y+\sqrt{y^2+1}\\\frac{1}{y+\sqrt{y^2+1}}=x+\sqrt{x^2+1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x+\sqrt{x^2+1}=y+\sqrt{y^2+1}\left(1\right)\\-y+\sqrt{y^2+1}=x+\sqrt{x^2+1}\left(2\right)\end{cases}}\)
Cộng vế với vế của (1) và (2) ta có:
\(-2x-2y=0\Leftrightarrow-2\left(x+y\right)=0\Leftrightarrow x+y=0\)
\(\Rightarrow P=x^{2019}+y^{2019}=0\)
Có: \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2019}\)
\(\Leftrightarrow\left[xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right]^2=2019\)
\(\Leftrightarrow x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)
\(\Leftrightarrow x^2y^2+x^2y^2+x^2+y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)
\(\Leftrightarrow y^2\left(1+x^2\right)+x^2\left(1+y^2\right)+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)
\(\Leftrightarrow\left[y\left(1+x^2\right)+x\left(1+y^2\right)\right]^2=2018\)
\(\Leftrightarrow y\left(1+x^2\right)+x\left(1+y^2\right)=\sqrt{2018}\)
hay \(A=\sqrt{2018}\)
Từ giả thiết suy ra
\(x+\sqrt{x^2+2019}=\frac{2019}{y+\sqrt{y^2+2019}}\)
mà \(x+\sqrt{x^2+2019}=\frac{2019}{\sqrt{x^2+2019}-x}\)(nhân liên hợp)
\(\Rightarrow\)\(y+\sqrt{y^2+2019}=\sqrt{x^2+2019}-x\)(1)
Tương tự, có \(\sqrt{y^2+2019}-y=x+\sqrt{x^2+2019}\)(2)
Trừ từng vế của (1), (2) ta có
2y=\(-\)2x\(\Rightarrow2\left(x+y\right)=0\Rightarrow x+y=0\)