\(\sqrt{xy}\left(x-y\right)=x+y\). Tìm min 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 1 2024

Do \(x-y=\dfrac{x+y}{\sqrt{xy}}>0\Rightarrow x>y\)

Khi đó:

\(\sqrt{xy}\left(x-y\right)=x+y\Rightarrow xy\left(x-y\right)^2=\left(x+y\right)^2\)

\(\Rightarrow xy\left[\left(x+y\right)^2-4xy\right]=\left(x+y\right)^2\)

\(\Rightarrow\left(xy-1\right)\left(x+y\right)^2=4x^2y^2\)

\(\Rightarrow\left(x+y\right)^2=\dfrac{4x^2y^2}{xy-1}\)

Do vế trái dương nên vế phải dương \(\Rightarrow xy-1>0\)

\(\Rightarrow\left(x+y\right)^2=\dfrac{4x^2y^2-4+4}{xy-1}=4xy+4+\dfrac{4}{xy-1}=4\left(xy-1\right)+\dfrac{4}{xy-1}+8\)

\(\ge2\sqrt{4\left(xy-1\right).\dfrac{4}{xy-1}}+8=16\)

\(\Rightarrow x+y\ge4\)

\(P_{min}=4\) khi \(\left(x;y\right)=\left(2+\sqrt{2};2-\sqrt{2}\right)\)

\(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

ÁP DỤNG BĐT COSI
\(\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}=x+y+1\ge3=>x+y\ge2\)

\(P\ge\frac{\left(x+y\right)^2}{x+y}=2\left(cosi\right)\) vậy min P=2 <=> x=y=1

12 tháng 5 2021

                      Bài làm :

Ta có :

\(\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\ge4\)

\(\Leftrightarrow\sqrt{xy}+\sqrt{y}+\sqrt{x}+1\ge4\)

\(\Leftrightarrow\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)

Áp dụng BĐT cosi cho các số không âm ; ta được :

\(3\le\sqrt{xy}+\sqrt{x}+\sqrt{y}\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}=x+y+1\)

\(\Rightarrow x+y\ge2\)

Ta có :

\(P=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\)

\(\Rightarrow P\ge2\)

Dấu "=" xảy ra khi x=y=1

Vậy MinP = 2 <=> x=y=1

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

8 tháng 5 2018

Từ pt => x>y>0

pt<=>\(\left(x+y\right)^2=xy\left(x-y\right)^2\Leftrightarrow\left(x+y\right)^2=\left(\left(x+y\right)^2-4xy\right)xy\)

Đặt x+y=a, xy=b (a,b>0)

pttt \(a^2=\left(a^2-4b\right)b\Leftrightarrow a^2-a^2b+4b^2=0\Leftrightarrow\left(4b^2-a^2b+\frac{a}{16}^4\right)+a^2-\frac{a^4}{16}=0\)

\(\Leftrightarrow\left(2b-\frac{a}{4}^2\right)=\frac{a}{16}^4-a^2\)

Do VT >= 0 => VP>=o\(\Leftrightarrow a^2\ge16\Leftrightarrow a\ge4\)do a>0

14 tháng 11 2018

mình sắp tốt nghiệp cấp 3 rồi :(

19 tháng 10 2018

Ta có:

\(\sqrt{xy}\left(x-y\right)=x+y\Rightarrow\left(x+y\right)^2=xy\left(x-y\right)^2\)

đặt x+y=a và xy=b

\(\Rightarrow a^2=b\left(a^2-4b\right)\Rightarrow a^2=a^2b-4b^2\Rightarrow4b^2=a^2\left(b-1\right)\Rightarrow\frac{4b^2}{b-1}=a^2\)

Lại có:

\(\frac{b^2}{b-1}=\frac{b^2-1+1}{b-1}=b+1+\frac{1}{b-1}=b-1+\frac{1}{b-1}+2\ge2+2=4\)

\(\Rightarrow\frac{4b^2}{b-1}\ge16\Rightarrow a^2\ge16\Rightarrow a\ge4\Rightarrow x+y\ge4\)

Dấu bằng xảy ra khi \(x=2+\sqrt{2},y=2-\sqrt{2}\)

2 tháng 8 2016

\(---------\)

Ta có:

\(x+y+4=\left(x+2\right)+\left(y+2\right)\ge2\sqrt{\left(x+2\right)\left(y+2\right)}\) (theo bđt  \(AM-GM\)  cho bộ số gồm hai số thực không âm)

nên  \(x+y+\left(x+y+4\right)\ge x+y+2\sqrt{\left(x+2\right)\left(y+2\right)}\)

hay nói cách khác,  \(2\left(x+y+2\right)\ge12\)  (do   \(x+y+2\sqrt{\left(x+2\right)\left(y+2\right)}=12\)  )

\(\Rightarrow\)  \(x+y\ge4\)

Do đó, sau khi thiết lập điều kiện cho  \(x,y\) , ta tiếp tục áp dụng  \(AM-GM\)  cho 3 số thực dương đã cho trước, điển hình như:

\(\frac{x^3}{y+2}+\frac{y+2}{2}+2\ge3\sqrt[3]{\frac{x^3}{\left(y+2\right)}.\frac{\left(y+2\right)}{2}.2}=3x\) 

\(\Rightarrow\)  \(\frac{x^3}{y+2}\ge3x-\frac{y+2}{2}-2\)  \(\left(1\right)\)

Đổi biến, thực hiện công đoạn trên tương tự đối với phân thức sau, rút gọn và biến đổi lặp lại:

\(\frac{y^3}{x+2}\ge3y-\frac{x+2}{2}-2\)  \(\left(2\right)\)

Gộp  \(\left(1\right)\)  và   \(\left(2\right)\)  với nhau cùng với dấu liên kết  \(\left(+\right)\) , khi đó:

\(\frac{x^3}{y+2}+\frac{y^3}{x+2}\ge\frac{5}{2}\left(x+y\right)-6\)

Lúc đó, 

\(M\ge\frac{5}{2}\left(x+y\right)+\frac{48}{x+y}-6\)

\(---------\)

Đặt  \(t=x+y\)  \(\Rightarrow\)  \(t\ge4\)

\(\Rightarrow\)  \(\frac{t}{2}\ge2\)  \(\Rightarrow\)  \(\frac{t}{2}-2\ge0\)  \(\left(3\right)\)

Ta biễu diễn bđt trên lại như sau:

\(M\ge\frac{5t}{2}+\frac{48}{t}-6\)

tức là   \(M\ge\frac{5t}{2}+\frac{t}{2}+\frac{48}{t}-6-2\)  (do  \(\left(3\right)\)  )

hay   \(M\ge\frac{5t}{2}+\frac{t}{2}+\frac{48}{t}-6-2=3t+\frac{48}{t}-8\)

Mặt khác, ta lại có:  \(3t+\frac{48}{t}\ge2\sqrt{3t.\frac{48}{t}}=24\)

nên  \(M\ge24-8=16\)

Vậy,  \(M_{min}=16\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(x=y=2\)

3 tháng 8 2016
  • cách Phước Nguyễn dài :)). Tư gt bạn suy ra đc ​​\(\sqrt{x+2}+\sqrt{y+2}=4\).(1)
  • Áp dụng bdt cosi cho 3 số dg :\(\frac{x^3}{y+2}+\sqrt{y+2}+\sqrt{y+2}\ge3x\)\(\frac{^{y^3}}{x+2}+\sqrt{x+2}+\sqrt{x+2}\ge3y\)

    \(\Rightarrow\frac{x^3}{y+2}+\frac{y^3}{x+2}+2.\left(\sqrt{x+2}+\sqrt{y+2}\right)\ge3\left(x+y\right)\)

 \(\Rightarrow M+8\ge3\left(x+y\right)+\frac{48}{x+y}\ge2.\sqrt{3.\left(x+y\right).\frac{48}{x+y}}=24\)( do (1) và áp dụng bdt cosi cho 2 số dg) . Dấu "=" xảy ra <=> x=y=2  . OK.

20 tháng 4 2020

Max=3,222222

16 tháng 7 2018

pt đã cho <=>\(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)-2\left(x+y\right)-\left(x+y+2\sqrt{xy}\right)+2\sqrt{xy}+4\left(\sqrt{x}+\sqrt{y}\right)-4=0\)

<=>\(\left(\sqrt{x}+\sqrt{y}\right)\left(x+y\right)-\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)-2\left(x+y\right)+2\sqrt{xy}-\left(\sqrt{x}+\sqrt{y}-2\right)^2=0\)

<=>\(\left(\sqrt{x}+\sqrt{y}-2\right)\left(x+y-\sqrt{xy}-\sqrt{x}-\sqrt{y}+2\right)=0\)

<=>\(\orbr{\begin{cases}\sqrt{x}+\sqrt{y}=2\\x+y-\sqrt{xy}-\sqrt{x}-\sqrt{y}+2=0\end{cases}}\)

th2: nhân cả hai vế với 2 ta được

\(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+2>0\)

=>th2 vô nghiệm

do đó M=\(\sqrt{xy}\)

áp dụng bdt cô si ta có \(\sqrt{x}+\sqrt{y}>=2\sqrt{\sqrt{xy}}\)

<=>1>=\(\sqrt{\sqrt{xy}}\)(do \(\sqrt{x}+\sqrt{y}=2\))

<=>\(\sqrt{xy}< =1\)

<=>M<=1