\(x^2y^2+2y+1=0\)Tính GTLN và GTNN của biểu t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2021

Ta có x2 - 3xy + 2y2 = 0

<=> x2 - xy - 2xy + 2y2 = 0

<=> x(x - y) - 2y(x - y) = 0

<=> (x - y)(x - 2y) = 0

<=> \(\orbr{\begin{cases}x-y=0\\x-2y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=y\\x=2y\end{cases}}}\)

*) Khi x = y

Vì x > y > 0 => x \(\ne y\)(loại)

* Khi x = 2y

=> x - y = 2y - y

=> y > 0 (Vì x - y > 0) (tm)

Với x = 2y ta có A = \(\frac{6x+16y}{5x-3y}=\frac{6.2y+16.y}{5.2y-3y}=\frac{28y}{7y}=4\)

3 tháng 2 2021

Ta có : x2  +2y2 -3xy=0

<=> x2 - 2xy + y2 + y2 -xy =0

<=> (x - y)2 + y(y - x)         =0

<=> (y - x)2 + y(y - x)         =0

<=> (y - x)(y - x + y)           =0

<=> y=x (vô lí ) hoặc x= 2y (thỏa mãn)

Thay x=2y vào A ta đc

A=\(\frac{12y+16y}{10y-3y}=\frac{28y}{7y}\)

A= 4

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{2}{xy}-\frac{1}{z^2}\)

Khai triển cả 2 vế ta được \(\left(\frac{1}{y}+\frac{1}{z}\right)^2+\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)

=>\(\hept{\begin{cases}\frac{1}{y}+\frac{1}{z}=0\\\frac{1}{x}+\frac{1}{z}=0\end{cases}}\)=>\(\frac{1}{x}=\frac{1}{y}\Rightarrow x=y\)

=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{x}+\frac{1}{z}=2\Rightarrow\frac{4}{x^2}+\frac{4}{xz}+\frac{1}{z^2}=4\)(1)

\(\frac{2}{xy}-\frac{1}{z^2}=\frac{2}{x^2}-\frac{1}{z^2}=4\)(2)

Từ (1) và (2) suy ra

\(\frac{2}{x^2}+\frac{4}{xz}+\frac{2}{z^2}=0\Rightarrow\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}=0\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)\(\Rightarrow\frac{1}{x}+\frac{1}{z}=0\Rightarrow x=y=-z\)

=> \(P=\left(x+2y+z\right)^{2019}=\left(2y\right)^{2019}\)

à thêm cái này nữa. Sorry viết thiếu

Vì x=y=-z\(\Rightarrow\frac{2}{x}-\frac{1}{x}=2\Rightarrow\frac{1}{x}=2\Rightarrow x=\frac{1}{2}.\)

lúc đó  \(P=\left(2.\frac{1}{2}\right)^{2019}=1\)

1 tháng 12 2016

Ta có

x2 + 2y2 + 2xy + 7x + 7y + 10 = 0

<=> (x + y)2 + 2(x + y) + 1 + 5(x + y + 1) + y2 + 4 = 0

<=> (x + y + 1)2 + 5(x + y + 1) + y2 + 4 = 0

<=> A2 + 5A + y2 + 4 = 0

<=> y2 = - 4 - 5A - A2 \(\ge0\)

<=> \(-4\le A\le-1\)

Vậy GTLN là -1, GTBN là - 4