\(x^2+y^2-6x+5=0\).Tìm GTNN của \(P=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2016

\(\Rightarrow\left(x-3\right)^2-4+y^2=0\)

x=3 

y=2

P=13

6 tháng 6 2016

x^2+y^2-6x+5=0

<=>x^2-6x+9+y^2-4=0

<=> (x-3)^2+(y^2-4)=0

<=> (x-3)^2=0 hoặc y^2-4=0

<=> x=3 và y=-2;2

ta có P=x^2+y^2=3^2+2^2=13>=13

Max P=13 <=> x=3;y=-2;2

4 tháng 2 2017

\(x^2+y^2=6x-5\)

\(\left(x-3\right)^2+y^2=2^2\Rightarrow1\le x\le5\)

\(1\le x^2+y^2\le25\)

27 tháng 5 2016

2) Ta có : \(x^2-2y^2=xy\Leftrightarrow x^2-2xy+xy-2y^2=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

\(\Rightarrow x+y=0\)hoặc \(x-2y=0\)

1. Với x + y = 0 => Q = 0

2. Với x - 2y = 0 => x = 2y thay vào Q được :

\(Q=\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)

6 tháng 12 2017

Ta có: \(2x^2+\frac{y^2}{4}+\frac{1}{x^2}=4\)

=> \(\left(x^2+\frac{y^2}{4}\right)+\left(x^2+\frac{1}{x^2}\right)=4\)

Lại có: \(x^2+\frac{y^2}{4}\ge2.x.\frac{y}{2}=xy\) Và \(x^2+\frac{1}{x^2}\ge2.x.\frac{1}{x}=2\)

=> \(4\ge xy+2\)=> \(2\ge xy\)

=> \(A=2016+xy\le2016+2=2018\)

=> Amin=2018

3 tháng 10 2020

\(\sqrt[]{\sqrt{ }\frac{ }{ }\sqrt[]{}3\hept{\begin{cases}\\\\\end{cases}}3\frac{ }{ }\sqrt{ }\cos\hept{\begin{cases}\\\\\end{cases}}\Omega3\cong}\)

25 tháng 12 2014

gia tri nho nhat bang 1 chac chan dung

 

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

mình nha