\(x^3+y^3\le x-y\).CMR:

1,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

Với \(0\le x;y\le1\) ta có:

\(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\ge\frac{x}{\sqrt{1+3}}+\frac{y}{\sqrt{1+3}}=\frac{x+y}{2}\)

Dấu "=" xảy ra <=> x = y = 1

Có: \(0\le x;y\le1\)

=> \(0\le x^2\le x\le1;0\le y^2\le y\le1\)

\(\left(\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}\right)^2\le2\left(\frac{x^2}{y+3}+\frac{y^2}{x+3}\right)\le2\left(\frac{x}{x+y+2}+\frac{y}{x+y+2}\right)\)

\(=2\left(\frac{x+y+2}{x+y+2}-\frac{2}{x+y+2}\right)\le2\left(1-\frac{2}{1+1+2}\right)=1\)

=> \(\sqrt{\frac{x}{\sqrt{y+3}}+\frac{y}{\sqrt{x+3}}}\le1\)

Dấu "=" xảy ra x<=>  = y =1

AH
Akai Haruma
Giáo viên
29 tháng 5 2018

Lời giải:

Do \(-2\leq x,y\leq 1\) nên:

\(\left\{\begin{matrix} (x+2)(x-1)\leq 0\\ (y+2)(y-1)\leq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x^2+x-2\leq 0\\ y^2+y-2\leq 0\end{matrix}\right.\)

\(\Rightarrow x^2+x-2+y^2+y-2\leq 0\)

\(\Leftrightarrow x^2+y^2\leq 4-(x+y)=4\)

Ta có đpcm.

18 tháng 4 2020

áp dụng AM-GM sai 1 cách trầm trọng

phải z: \(\frac{1}{x}+x+\frac{1}{y}+y\ge4\sqrt[4]{\frac{x}{x}\cdot\frac{y}{y}}=4\)

=> Min p = 1

18 tháng 4 2020

An Võ (leo) ok fine :) thanks nhiều cho cái dạng tổng quát được k

15 tháng 6 2017

\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)

ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)

\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)

Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị 

15 tháng 6 2017

trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))