Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong đề thi HSG tỉnh thanh hóa năm 2010-2011(đánh lên mạng đi,hình như là bài 5)
Khi x = y = z = 1 thì B = 5 do đó nếu ta chứng minh được B > 5 thì đây cũng chính là giá trị nhỏ nhất của B.
Viết B lại dưới dạng thuần nhất ta được : \(B=\frac{x}{z}+\frac{z}{y}+\frac{9y}{x+y+z}\)
Theo bất đẳng thức Cauchy-Schwarz: \(B\ge\frac{\left(x+z+3y\right)^2}{zx+yz+y\left(x+y+z\right)}\)
Cần chứng minh \(\left(x+z+3y\right)^2\ge5\left[zx+yz+y\left(x+y+z\right)\right]\) (*)
Đã có x > y > z nên tồn tại 2 số thực m,n không âm sao cho m = a + z ; n = b + z
Thay m,n vào (*) ta được kết quả thu gọn là a2 + ab + 4b2 + 5bz > 0
Do đó P = 5 đạt GTNN
Ta có : \(x\ge y\ge z\)\(\Rightarrow\frac{x}{z}\ge\frac{x}{y}\Rightarrow B\ge\frac{x}{y}+\frac{z}{y}+3y=\frac{3-y}{y}+3y=\frac{3}{y}+3y-1\ge2.\sqrt{\frac{3}{y}.3y}-1=5\)
Dấu đẳng thức xảy ra \(\Leftrightarrow\begin{cases}\frac{x}{z}+\frac{z}{y}+3y=5\\x+y+z=3\\\frac{3}{y}=3y\end{cases}\)\(\Leftrightarrow x=y=z=1\)
Vậy Min B = 5 <=> x = y = z = 1.
Dự đoán \(M\) đạt min tại mỗi biến bằng \(\frac{2}{3}\).
Nên ta viết lại \(M=\left(x+\frac{4}{9x}\right)+\left(y+\frac{4}{9y}\right)+\frac{5}{9}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng BĐT AM-GM cho hai lượng đầu và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(M\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{x+y}\ge\frac{4}{3}+\frac{4}{3}+\frac{5}{9}.\frac{4}{\frac{4}{3}}=\frac{13}{3}\)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Cái cuối 4 hay 1. Sao thì cũng được nhưng khác kết quả
Áp dụng Bđt C-S:\(P=3-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le3-\frac{9}{x+y+z}=3-\frac{9}{6}=\frac{3}{2}\)
vì x+y=1\(\Rightarrow\sqrt{1-x}=\sqrt{x+y-x}=\sqrt{y}\)
\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}=\frac{x+y+y}{\sqrt{y}}=\frac{y+1}{\sqrt{y}}=\frac{y+\frac{1}{2}}{\sqrt{y}}+\frac{1}{2\sqrt{y}}\)
ad cau-chy có \(y+\frac{1}{2}\ge2\sqrt{\frac{y}{2}}=\sqrt{2y}\)\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}\ge\sqrt{2}+\frac{1}{2\sqrt{y}}\)
Tương tự .....\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\)
cm \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{4}{\sqrt{x}+\sqrt{y}}\ge\frac{4}{\sqrt{2\left(x+y\right)}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)
\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}.2\sqrt{2}=3\sqrt{2}\)
Dấu = xra khi x=y=1/2
k cho mk nha mn ^.^
Từ điều kiện suy ra \(\sqrt{xy}+\sqrt{x}+\sqrt{y}\ge3\)
Áp dụng BĐT Cô-si, ta có :
\(3\le\sqrt{xy}+\sqrt{x}.1+\sqrt{y}.1\le\frac{x+y}{2}+\frac{x+1}{2}+\frac{y+1}{2}\)
\(\Rightarrow x+y\ge2\)
Ta có : \(\frac{x^2}{y}+y\ge2\sqrt{\frac{x^2}{y}.y}=2x\); \(\frac{y^2}{x}+x\ge2\sqrt{\frac{y^2}{x}.x}=2y\)
\(\Rightarrow\frac{x^2}{y}+\frac{y^2}{x}+x+y\ge2x+2y\)
\(\Rightarrow P=\frac{x^2}{y}+\frac{y^2}{x}\ge x+y\ge2\)
Vậy GTNN của P là 2 khi x = y = 1