\(\ge\)4. Tìm giá trị nhỏ nhất của biểu thức:

5(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

Điều kiện \(x\ge-1\) và \(y\ge-2\). Gọi T là tập giá trị  của K. Khi đó \(m\in T\) khi và chỉ khi hệ sau có nghiệm :

\(\begin{cases}x-3\sqrt{x+1}=3\sqrt{y+2}-y\\x+y=m\end{cases}\) \(\Leftrightarrow\begin{cases}3\left(\sqrt{x+1}+\sqrt{y+2}\right)=m\\x+y=m\end{cases}\) (1)

Đặt \(u=\sqrt{x+1};v=\sqrt{y+2}\), điều kiện \(u\ge0;v\ge0\)

Thay vào (1), ta được : 

\(\begin{cases}3\left(u+v\right)=m\\u^2+v^2=m+3\end{cases}\) \(\Leftrightarrow\begin{cases}u+v=\frac{m}{3}\\uv=\frac{1}{2}\left(\frac{m^2}{9}-m-3\right)\end{cases}\)

Hay u và v là nghiệm của phương trình :

\(t^2-\frac{m}{3}t+\frac{1}{2}\left(\frac{m^2}{9}-m-3\right)=0\)

\(\Leftrightarrow18t^2-6mt+m^2-9m-27=0\)  (2)

Hệ (1) có nghiệm x, y thỏa mãn điều kiện  \(x\ge-1\) và \(y\ge-2\) khi và chỉ khi (2) có nghiệm không âm, hay :

\(\begin{cases}\Delta'=-9\left(m^2-18m-54\right)\ge0\\S=\frac{m}{3}\ge0\\P=\frac{m^2-9m-27}{18}\ge0\end{cases}\)

\(\Leftrightarrow\frac{9+3\sqrt{21}}{2}\le m\le9+3\sqrt{15}\)

Vậy \(T=\left[\frac{9+3\sqrt{21}}{2};9+3\sqrt{15}\right]\)

Suy ra Max K = \(\frac{9+3\sqrt{21}}{2}\)

           Min K = \(9+3\sqrt{15}\)

24 tháng 5 2020

\(P=\sqrt{x^4+x^2y^2}+x^2=\sqrt{x^4+\frac{1}{x^2}}+x^2\)

Ta có: \(x^4+\frac{1}{x^2}=x^4+\frac{1}{8x^2}+\frac{1}{8x^2}+...+\frac{1}{8x^2}\ge9\sqrt[9]{x^4.\left(\frac{1}{8x^2}\right)^8}\)

\(=9\sqrt[9]{\frac{1}{8^8.x^{12}}}\)

=> \(P=3\sqrt[18]{\frac{1}{8^8.x^{12}}}+x^2\)

\(=\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+x^2\)

\(\ge4\sqrt[4]{\left(\sqrt[18]{\frac{1}{8^8x^{12}}}\right)^3.x^2}\)

\(=4.\left(\frac{1}{8^{\frac{1}{3}}.x^{\frac{1}{2}}}\right).x^2=2\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^4=\frac{1}{8x^2}\\x^2=\sqrt[8]{\frac{1}{8^8x^{12}}}\end{cases}}\)<=> x^2 = 1/2 khi đó y = 2 , x = \(\frac{1}{\sqrt{2}}\)

Vậy GTNN của P = 2.

5 tháng 3 2019

a) Giá trị của biểu thức A tại x=-1 và y=-1 là:

A=5x3y2=5.(-1)3.(-1)2=5.(-1).1=-5

b) Giá trị của biểu thức B tại x=-3 và y=-1 là:

B=5xy4=5.(-3).(-1)4=-15

c) Giá trị của biểu thức C tại x=5 và y=-2 là:

\(C=\frac{4}{5}xy^3=\frac{4}{5}.5.\left(-2\right)^3=4.\left(-8\right)=-32\)

d) Giá trị của biểu thức D tại x=2 và y=\(\frac{1}{3}\) là:

\(D=\frac{3}{4}x^2y^3=\frac{3}{4}.2^2.\left(\frac{1}{3}\right)^3=3.\frac{1}{27}=\frac{1}{9}\)

e) Giá trị của biểu thức E tại x=\(\frac{1}{2}\) và y=5 là:

\(E=\frac{2}{5}x^2y=\frac{2}{5}.\left(\frac{1}{2}\right)^2.5=2.\frac{1}{4}=\frac{1}{2}\)