Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{y-1}\right)+\left(x\sqrt{x}-y\sqrt{y}\right)=0\)
\(\Leftrightarrow\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x-1}+\sqrt{y-1}}+x+\sqrt{xy}+y\right)=0\)
\(\Leftrightarrow x=y\)
\(\Rightarrow S=2x^2-8x+5=2\left(x-2\right)^2-3\ge-3\)
Tại sao từ:\(\left(\sqrt{x-1}-\sqrt{y-1}\right)\) lại => đc: \(\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}\)??????????
vì x+y=1\(\Rightarrow\sqrt{1-x}=\sqrt{x+y-x}=\sqrt{y}\)
\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}=\frac{x+y+y}{\sqrt{y}}=\frac{y+1}{\sqrt{y}}=\frac{y+\frac{1}{2}}{\sqrt{y}}+\frac{1}{2\sqrt{y}}\)
ad cau-chy có \(y+\frac{1}{2}\ge2\sqrt{\frac{y}{2}}=\sqrt{2y}\)\(\Rightarrow\frac{x+2y}{\sqrt{1-x}}\ge\sqrt{2}+\frac{1}{2\sqrt{y}}\)
Tương tự .....\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\)
cm \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{4}{\sqrt{x}+\sqrt{y}}\ge\frac{4}{\sqrt{2\left(x+y\right)}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)
\(\Rightarrow P\ge2\sqrt{2}+\frac{1}{2}.2\sqrt{2}=3\sqrt{2}\)
Dấu = xra khi x=y=1/2
k cho mk nha mn ^.^
\(\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)
\(\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\)
\(\ge2\sqrt{2\sqrt{\frac{1}{16xy}\cdot xy}+\frac{15}{4\left(x+y\right)^2}}=2\sqrt{\frac{1}{2}+\frac{15}{4}}=\sqrt{17}\)
Dấu "=" xảy ra tai x=y=1/2
Áp dụng BĐT Cô-si ta có:
\(2x^2+3xy+4y^2\ge3\sqrt[3]{2x^2\cdot3xy\cdot4y^2}=3\sqrt[3]{24x^3y^3}\Rightarrow\sqrt{2x^2+3xy+4y^2}\ge\sqrt{xy\cdot3\sqrt[3]{24}}\)
Tương tự: \(\sqrt{2y^2+3yz+4z^2}\ge\sqrt{yz\cdot3\sqrt[3]{24}}\); \(\sqrt{2z^2+3zx+4x^2}\ge\sqrt{zx\cdot3\sqrt[3]{24}}\)
Cộng theo vế 3 BĐT vừa tìm, ta được:
\(P\ge\sqrt{3\sqrt[3]{24}}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\sqrt{3\sqrt[3]{24}}=\sqrt[6]{648}\)
Em không chắc đâu nha!
Từ đề bài suy ra \(0\le x;y;z\le1\Rightarrow x\left(1-x\right)\ge0\Rightarrow x\ge x^2\)
Tương tự với y với z.Ta có:
\(P=\sqrt{x^2+x^2+x+1}+\sqrt{y^2+y^2+y+1}+\sqrt{z^2+z^2+z+1}\)
\(\le\sqrt{x^2+2x+1}+\sqrt{y^2+2y+1}+\sqrt{z^2+2z+1}\)
\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}\)
\(=\left|x+1\right|+\left|y+1\right|+\left|z+1\right|\)
\(=\left(x+y+z\right)+3=1+3=4\)
Dấu "=" xảy ra khi (x;y;z) = (0;0;1) và các hoán vị của nó.
Vậy....
Hì , giải đc rùi nha.
Vì \(x,y\in R\)
\(\Rightarrow\left(x+2\right).\left(y+2\right)=\frac{25}{4}\)
Min \(P=\sqrt{1+x^4}+\sqrt{1+y^4}\)
- Dự đoán \(x=y=\frac{1}{2}\)
- Sử dụng BĐT : \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\) ( Với a,b > 0 )
=> \(1+x^4=16.\frac{1}{16}+a^4=16.\left(\frac{1}{4}\right)^2+a^2\ge\frac{[16.\frac{1}{4}+a^2]^2}{17}\)
\(=\frac{(a^2+4)^2}{17}\)
=> \(1+y^4\ge\frac{\left(y^2+4\right)^2}{17}\)
=> \(P\ge\frac{x^2+y^2+8}{\sqrt{17}}\)
\(\Leftrightarrow P\sqrt{17}=\frac{1}{5}\left(x^2+y^2\right)+\frac{4}{5}\left(x^2+\frac{1}{4}+y^2+\frac{1}{4}\right)+8-\frac{2}{5}\)
\(\ge\frac{2xy}{5}+\frac{4}{5}\left(x+y\right)+8-\frac{2}{5}=\frac{2}{5}[xy+2\left(x+y\right)]+8-\frac{2}{5}\)
Theo giả thiết \(\left(x+2\right)\left(y+2\right)=\frac{25}{4}\)
\(\Leftrightarrow xy+2\left(x+y\right)=\frac{9}{4}\)
\(\Rightarrow P\sqrt{17}\ge\frac{2}{5}.\frac{9}{4}+8-\frac{2}{5}=\frac{17}{2}\)
\(\Leftrightarrow P\ge\frac{\sqrt{17}}{2}\)
Điểm rơi \(x=y=\frac{1}{2}\)
\(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\)(ĐK:\(x;y\ge1\))
\(\Leftrightarrow\sqrt{x-1}+x\sqrt{x}=\sqrt{y-1}+y\sqrt{y}\)
Xét x<y\(\Rightarrow\sqrt{x-1}< \sqrt{y-1};x\sqrt{x}< y\sqrt{y}\)
\(\Rightarrow VT< VP\)
TT xét x>y=>VT>VP
\(\Rightarrow x=y\)
\(\Rightarrow S=x^2+3x^2-2x^2-8x+5\)
\(S=2x^2-8x+5=2\left(x-2\right)^2-3\ge-3\)
"="<=>x=y=2(tm)