K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2019

B tự c/m BĐT \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)nhé.

Dấu " = " xảy ra \(\Leftrightarrow x=y=z\)

Áp dụng :

\(x^4+y^4+z^4\ge\frac{1}{3}.\left(x^2+y^2+z^2\right)^2\ge\frac{1}{3}.\left[\frac{1}{3}.\left(x+y+z\right)^2\right]^2=\frac{1}{27}.\left(x+y+z\right)^4=\frac{1}{27}.2^4=\frac{16}{27}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)

KL:...

 
2 tháng 3 2019

vận dụng bất đẳng thức x^2+y^2+z^2 \(\ge\) (x+y+z)^2/3