Cho x,y là các số thực dương và x ≠ y . Biểu t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2019

Đáp án B

A = x 2 x + y 2 x 2 − 4 1 2 x x y 2 x = x 2 x 2 + 2 x 2 x . y 2 x + y 2 x 2 − 4 1 2 x 2 x . x 2 x . y 2 x

= x 2 x 2 − 2 x 2 x . y 2 x + y 2 x 2 = x 2 x − y 2 x 2 = x 2 x − y 2 x .

2) Ta có:

\(B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=x^4+x^3y-2x^3+x^3y+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)

\(=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[x\left(x+y\right)-2x\right]+3\)

Do \(x+y-2=0\Rightarrow x+y=2\)

\(\Rightarrow B=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[2x-2x\right]+3\)

\(=x^3.\left(x+y-2\right)+x^2y\left(x+y-2\right)-0+3\)

\(=0+0+3\)

\(=3\)

Vậy \(B=3\)

1) Ta có:

\(A=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)

\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+y+x-1\)

\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+1\)

\(=0+0+0+1\)

\(=1\)

Vậy \(A=1\)

7/  Em sửa lại đề ạ 

Cho hai số thực dương a, b thỏa mãn a+b=4ab

Chứng minh rằng  \(\frac{a}{4b^2+1}+\frac{b}{4a^2+1}\ge\frac{1}{2}\)

Đổi biến \(\left(a,b\right)\rightarrow\left(\frac{1}{x},\frac{1}{y}\right)\)

Từ giả thiết => x+y=4

Ta có: BĐT cần CM tương đương với:

\(\frac{\frac{1}{x}}{\frac{4}{y^2}+1}+\frac{\frac{1}{y}}{\frac{4}{x^2}+1}\ge\frac{1}{2}\)\(\Leftrightarrow\frac{y^2}{x\left(4+y^2\right)}+\frac{x^2}{y\left(4+x^2\right)}\ge\frac{1}{2}\left(1\right)\)

Áp dụng BĐT Schwarz, ta có:
\(\frac{x^2}{y\left(4+x^2\right)}\ge\frac{\left(x+y\right)^2}{4\left(x+y\right)+xy^2+x^2y}=\frac{16}{16+xy^2+x^2y}\)

Ta chỉ cần chứng minh:

\(xy^2+x^2y\le16\Leftrightarrow xy^2+x^2y\le\frac{1}{4}\left(x+y\right)^3\)

\(\Leftrightarrow xy^2+x^2y\le x^3+y^3\)(luôn đúng)

Do đó (1) đúng. BĐT được chứng minh. Dấu "=" xảy ra khi x=y=2⇔a=b=\(\frac{1}{2}\)

6. (chuyên Hòa Bình)

Cho các số dương x, y, z thỏa mãn: xy+zx+4yz=32

Tìm giá trị nhỏ nhất của\(P=x^2+16y^2+16z^2\)

Áp dụng bất đẳng thức Cauchy cho  ba số dương  x,y,z ta có

\(\hept{\begin{cases}8y^2+\frac{1}{2}x^2\ge2\sqrt{8y^2.\frac{1}{2}x^2}=4xy\\8z^2+\frac{1}{2}x^2\ge2\sqrt{8z^2.\frac{1}{2}x^2}=4xz\\8y^2+8z^2\ge2\sqrt{8y^2.8z^2}=16yz\end{cases}}\)

Cộng từng vế của ba bđt trên ta có

\(P\ge4\left(xy+xz+4yz\right)=4.32=128\)

15 tháng 11 2017

Đề không sai đâu !!

18 tháng 10 2018

Bài a làm gì có z

22 tháng 2 2016

a) Vì \(\left|x\left(x^2-3\right)\right|\ge0\) nên \(x\ge0\)

Ta có : |x(x2 - 3)| = x

<=> x(x2 - 3) = x  <=> x2 - 3 = x : x = 1 <=> x2 = 4

Vì x \(\ge\) 0 nên x = 2

21 tháng 2 2016

\(\begin{cases}\sqrt{xy}+\frac{1}{\sqrt{xy}}=\frac{5}{2}\\\sqrt{x}+\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=\frac{9}{2}\end{cases}\)

<=>\(\begin{cases}xy+1=\frac{5\sqrt{xy}}{2}\\\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}+\sqrt{y}=\frac{9\sqrt{xy}}{2}\end{cases}\)

Đặt P=\(\sqrt{xy}\);S=\(\sqrt{x}+\sqrt{y}\)(S2\(\ge\)4P)

Ta có HPT: \(\begin{cases}P^2+1=\frac{5P}{2}\\S.P+P=\frac{9P}{2}\end{cases}\)

Tới đây dễ tự làm 

21 tháng 2 2016

Khử mẫu đặt S P

3 tháng 4 2016

\(\left(\frac{x^2}{y^2}+2+\frac{y^2}{x^2}\right)-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)

\(\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)

\(\left(t-1\right)\left(t-2\right)\ge0\) với \(t=\frac{x}{y}+\frac{y}{x}\ge2\)

=>\(\left(t-1\right)\left(t-2\right)\ge0\) luôn đúng với t \(\ge2\)  dpcm

4 tháng 4 2016

bài này dễ

23 tháng 2 2016

a) Theo đề bài, ta có :

\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\) => \(\frac{5}{x}=\frac{1+2y}{6}\)

2y+11-13-35-515-15
2y0-22-44-614-16
y0-11-22-37-8
x30-3010-106-62-2

b) \(\frac{2}{y}-\frac{x}{6}=\frac{1}{30}\) => \(\frac{2}{y}=\frac{5x-1}{30}\)

5x-1-14-6
5x05-5
x01-1
y-6015-10