\(x^2-y=y^2-x\)

tính A =

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2018

x2 - y = y2 - x

<=> (x2 - y2) + (x - y) = 0

<=> (x - y)(x + y) + (x - y) = 0

<=> (x - y)(x + y + 1) = 0

Vì x ≠ y => x - y ≠ 0 => x + y + 1 = 0

Tới đây không biết nhóm khéo léo thì thay x = -y - 1 vào A, khả năng sẽ rút gọn được đó

22 tháng 10 2018

Ta có : \(x^2-x=y^2-y\)

\(\Leftrightarrow x^2-x-y^2+y=0\)

\(\Leftrightarrow x^2-y^2-\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-1\right)=0\)

Do \(x;y\) khác nhau

\(\Rightarrow x-y\ne0\)

\(\Rightarrow x+y-1=0\)

\(\Rightarrow x+y=1\)

Lại có : \(B=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x^2+y^2\right)+6x^2y^2\)

\(=x^2-xy+y^2+3xy\left(x^2+y^2+2xy\right)\)

\(=x^2-xy+y^2+3xy\left(x+y\right)^2\)

\(=x^2-xy+y^2+3xy\)

\(=x^2+2xy+y^2\)

\(=\left(x+y\right)^2\)

\(=1\)

Vậy \(B=1\)

haha

6 tháng 8 2019

\(A=3\left(x^2+y^2\right)-2\left(x^3+y^3\right)\)

\(=3x^2+3y^2-2\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=3x^2+3y^2-2.1\left(x^2-xy+y^2\right)\)

\(=3x^2+3y^2-2x^2+2xy-2y^2\)

\(=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)

\(B=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2.1\)

\(=x^3+y^3+3xy\left(x+y\right)^2-6x^2y^2+6x^2y^2\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=x^2-xy+y^2+3xy\)

\(=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)

19 tháng 6 2018

Bạn coi lại đề giùm đi.

19 tháng 6 2018

\(18x^2-6x-9x+3-18x^2+2x-27x+3=-6.\)

\(-15x+12+2x=0\)

\(-13x=-12\Leftrightarrow x=\frac{13}{12}\)

11 tháng 11 2017

xin loi  nha mình không biết 

28 tháng 8 2018

a) Ta có:

\(x+y=1\)

\(\Rightarrow\left(x+y\right)^3=1\)

\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=1\)

\(\Rightarrow x^3+y^3+3xy=1\)

\(\Rightarrow P=1\)

b) \(Q=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)

\(Q=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\left(x+y\right)\)

\(Q=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\left(x+y\right)\)

Thay x + y = 1 vào Q

\(Q=1-3xy+3xy\left(1-2xy\right)+6x^2y^2\)

\(Q=1-3xy+3xy-6x^2y^2+6x^2y^2\)

\(Q=1\)

20 tháng 7 2016

\(C=\left(x^3+y^3\right)+3xy\left(x^2+y^2+2xy\left(x+y\right)\right)\)

\(C=\left(x^3+y^3+3x^2y+3xy^2-3x^2y-3xy^2\right)+3xy\left(x^2+y^2+2xy\right)\) (vì x+y=1)

\(C=\left(x+y\right)^3-3x^2y-3xy^2+3xy\left(x+y\right)^2\)

\(C=1^3-3xy\left(x+y\right)+3xy.1^2\) (vì x+y=1)

\(C=1-3xy+3xy\)(vì x+y=1)

\(C=1\)

\(D=2\left(\left(x+y\right)^3-3xy\left(x+y\right)\right)-3\left(\left(x+y\right)^2-2xy\right)\)

\(D=2\left(1^3-3xy\right)-3\left(1^2-2xy\right)\)(vì x+y=1)

\(D=2-6xy-3+6xy\)

\(D=-1\)