Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(0\le x,y,z\le1\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy+1\ge x+y\)
Tương tự:
\(yz+1\ge y+z;zx+1\ge z+x\)
Khi đó
\(LHS\le\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\le\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=2\)
Không chắc nha !

\(1=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{z}\right)+\frac{1}{2}\left(\frac{y}{z}+\frac{z}{x}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{y}\right)\)
\(\ge\sqrt{\frac{x}{y}.\frac{y}{z}}+\sqrt{\frac{y}{z}.\frac{z}{x}}+\sqrt{\frac{z}{x}.\frac{x}{y}}=VP\) (rút gọn lại thôi:v)

Có:x+y =1 => (x+y)2 = 1 => x2 + y2 = 1-2xy
\(\frac{x}{y+1}+\frac{y}{x+1}=\frac{x\left(x+1\right)+y\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\frac{x^2+x+y^2+y}{yx+y+x+1}=\frac{1-2xy+1}{yx+2}\)\(=\frac{2-2xy}{2+yx}\)
Vì x,y không âm
=> \(-xy\le xy\)
=> \(-2xy\le xy\)
=>\(2-2xy\le2+xy\)
=> \(\frac{2-2xy}{2+xy}\le1\)
=> đpcm
\(\text{Ta có:}\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2+x+y^2+y}{\left(x+1\right)\left(y+1\right)}\)
\(=\frac{\left(x+y\right)^2-2xy+1}{xy+x+y+1}=\frac{1-2xy+1}{xy+2}\)
\(=\frac{2-2xy}{2+xy}\)
\(\text{Vì }2-2xy\le2+xy\left(do\text{ x,y không âm}\right)\text{ nên }\frac{2-2xy}{2+xy}\le1\)
\(=>\frac{x}{y+1}+\frac{y}{x+1}\le1\)