Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(P=\frac{3}{4}x+\frac{1}{x}+\frac{2}{y^2}+y\)
\(=\left(\frac{1}{x}+\frac{x}{4}\right)+\left(\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}\right)+\frac{1}{2}\left(x+y\right)\)
\(\ge2\sqrt{\frac{1}{x}.\frac{x}{4}}+3\sqrt[3]{\frac{2}{y^2}.\frac{y}{4}.\frac{y}{4}}+\frac{1}{2}.4=1+\frac{3}{2}+2=\frac{9}{2}\)
Vậy MInP=9/2 khi \(\hept{\begin{cases}\frac{1}{x}=\frac{x}{4}\\\frac{2}{y^2}=\frac{y}{4}\\x+y=4\end{cases}\Rightarrow}x=y=2\)
Áp dụng bđt bunhiacopxki, ta có:
\(\left(x^2+\frac{1}{x^2}\right)\left(1+16\right)\ge\left(x+\frac{4}{x}\right)^2\) => \(x^2+\frac{1}{x^2}\ge\frac{\left(x+\frac{4}{x}\right)^2}{17}\)
=> \(\sqrt{x^2+\frac{1}{x^2}}\ge\frac{x+\frac{4}{x}}{\sqrt{17}}=\frac{x}{\sqrt{17}}+\frac{4}{x\sqrt{17}}\)
CMTT: \(\sqrt{y^2+\frac{1}{y^2}}\ge\frac{y}{\sqrt{17}}+\frac{4}{\sqrt{17}y}\)
\(\sqrt{z^2+\frac{1}{z^2}}\ge\frac{z}{\sqrt{17}}+\frac{4}{\sqrt{17}z}\)
=> A \(\ge\frac{x+y+z}{\sqrt{17}}+\frac{4}{\sqrt{17}}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{x+y+z}{\sqrt{17}}+\frac{36}{\sqrt{17}\left(x+y+z\right)}\)(bđt: 1/a + 1/b + 1/c > = 9/(a+b+c)
=> A \(\ge\frac{16\left(x+y+z\right)}{\sqrt{17}}+\frac{36}{\sqrt{17}\left(x+y+z\right)}-\frac{15\left(x+y+z\right)}{\sqrt{17}}\)
A \(\ge2\sqrt{\frac{16\left(x+y+z\right)}{\sqrt{17}}\cdot\frac{36}{\sqrt{17}\left(x+y+z\right)}}-\frac{15\cdot\frac{3}{2}}{\sqrt{17}}\)(Bđt cosi + bđt: x + y + z < = 3/2)
A \(\ge\frac{48}{\sqrt{17}}-\frac{45}{2\sqrt{17}}=\frac{3\sqrt{17}}{2}\)
Dấu "=" xảy ra <=> x = y= z = 1/2
Vậy MinA = \(\frac{3\sqrt{17}}{2}\) <=> x = y = z = 1/2
a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)
Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2
b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)
Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)
Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Cho x,y là hai số dương thay đổi thỏa mãn xy=1, tìm gtln của \(\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
với x,y dương, áp dụng bđt cosi ta có:
\(x^4+y^2\ge2\sqrt{x^4.y^2}=2x.xy=2x\left(xy=1\right)\Rightarrow\frac{x}{x^4+y^2}\le\frac{x}{2x}=\frac{1}{2}\)
tương tự thì: \(\frac{y}{x^2+y^4}\le\frac{1}{2}\)
=> (gọi là A đi ): \(A\le\frac{1}{2}+\frac{1}{2}=1\Leftrightarrow x=y=1\)
\(xy=12\Rightarrow y=\frac{12}{x}\)
\(\Rightarrow P=\frac{2}{x}+\frac{x}{2}+\frac{3}{x+\frac{4}{x}}=\frac{1}{2}\left(x+\frac{4}{x}\right)+\frac{3}{x+\frac{4}{x}}\)
\(P=\frac{3}{16}\left(x+\frac{4}{x}\right)+\frac{3}{x+\frac{4}{x}}+\frac{29}{16}\left(x+\frac{4}{x}\right)\)
\(P\ge2\sqrt{\frac{9\left(x+\frac{4}{x}\right)}{16\left(x+\frac{4}{x}\right)}}+\frac{19}{16}.2\sqrt{x.\frac{4}{x}}=\frac{25}{4}\)
\(P_{min}=\frac{25}{4}\) khi \(\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)