\(\in\)Z

biết x+y \(⋮\) 7

cmr : 10x - 18y...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

ta có x-y chia hết cho 7

=>22x-22y chia hết cho7 

=>22x-y chia hết cho 7 (đpcm)

14 tháng 1 2017

ta thấy \(x-y⋮7\Rightarrow\hept{\begin{cases}x⋮7\\y⋮7\left(1\right)\end{cases}}\)

\(\Rightarrow22x⋮7\)(2)

từ (1)và(2)

\(\Rightarrow22x-y⋮7\)( Điều Phải Chứng Minh )

16 tháng 7 2017

1a/ \(\left(15-x\right)+\left(x-12\right)=7-\left(-5+x\right)\)

=> \(\left(15-x\right)+\left(x-12\right)+\left(-5+x\right)=7\)

=> \(15-x+x-12-5+x=7\)

=> \(\left(15-12-5\right)-\left(x+x+x\right)=7\)

=> \(\left(15-12-5\right)-7=3x\)

=> \(3x=-2-7\)

=> \(3x=-9\)

=> \(x=\frac{-9}{3}=-3\)

b/ \(x-\left\{57-\left[42+\left(-23-x\right)\right]\right\}=13-\left\{47+\left[25-\left(32-x\right)\right]\right\}\)

=> \(x-57-42-23-x=13-47+25-32+x\)

=> \(x-x+x=13-47+25-32+57+42+23\)

=> \(x=\left(13+23\right)-\left(47+57\right)+\left(25+57\right)-\left(32+42\right)\)

=> \(x=36-104+82-74\)

=> \(x=-60\)

d/ \(\left(x-3\right)\left(2y+1\right)=7\)

Vì 7 là số nguyên tố nên ta có 2 trường hợp:

TH1: \(\hept{\begin{cases}x-3=1\\2y+1=7\end{cases}}\)=> \(\hept{\begin{cases}x=4\\y=3\end{cases}}\).

TH2: \(\hept{\begin{cases}x-3=7\\2y+1=1\end{cases}}\)=> \(\hept{\begin{cases}x=10\\y=0\end{cases}}\).

Các cặp (x, y) thoả mãn điều kiện: \(\left(4;3\right),\left(10;0\right)\).

26 tháng 11 2016

Câu b :

Ta có 5x+7 =5(x-2)+17

Vì 5(x-2) chia hết cho x-2

=> để 5x+7 chia hết cho x-2 thì 17 phải chia hết cho x-2

=>x-2 thuộc tập hợp ước cua 17

=>x-2=1;-1;17;-17

=>x=3;1;19;-15

Mà x thuộc tập hợp số tự nhiên nên ta chọn x=3;1;19

26 tháng 11 2016

soyeon_Tiểubàng giải HELP ME

Nguyễn Huy Tú

Silver bullet

Lê Nguyên Hạo

1 tháng 3 2017

a. \(\Rightarrow\left\{\begin{matrix}\dfrac{-10}{15}=\dfrac{x}{-9}\\\dfrac{-10}{15}=\dfrac{-8}{y}\\\dfrac{-10}{15}=\dfrac{z}{-21}\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=6\\y=12\\z=14\end{matrix}\right.\)

b. \(\Rightarrow\left\{\begin{matrix}\dfrac{-7}{6}=\dfrac{x}{18}\\\dfrac{-7}{6}=\dfrac{-98}{y}\\\dfrac{-7}{6}=\dfrac{-14}{z}\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-21\\y=84\\z=-12\end{matrix}\right.\)

1 tháng 3 2017

a) Ta có: \(\dfrac{-10}{15}=\dfrac{x}{-9}\)

\(\Rightarrow15x=-10.\left(-9\right)\)

\(\Rightarrow15x=90\)

\(\Rightarrow x=6\)

Khi đó: \(\dfrac{6}{-9}=\dfrac{-8}{y}=\dfrac{z}{-21}\)

\(\Rightarrow y=\dfrac{-8\left(-9\right)}{6}=12\)

\(z=\dfrac{-8\left(-21\right)}{12}\) \(=14\)

Vậy \(\left[{}\begin{matrix}x=6\\y=12\\z=14\end{matrix}\right.\)

b) Lại có: \(\dfrac{-7}{6}=\dfrac{x}{18}\)

\(\Rightarrow6x=-7.18\)

\(\Rightarrow6x=-126\)

\(\Rightarrow x=-21\)

Khi đó \(\dfrac{-21}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}\)

\(\Rightarrow y=\dfrac{-98.18}{-21}=84\)

\(z=\dfrac{-14.84}{-98}=12\)

Vậy \(\left[{}\begin{matrix}x=-21\\y=84\\z=12\end{matrix}\right.\)