K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 9 2020

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)>0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\y+2\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\y\ne-2\end{matrix}\right.\)

Đề bài sai, phải là \("x\ne1\) \(y\ne-2"\)

30 tháng 8 2021

\(x^2+y^2-2x-4y-4=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2-9=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=9=0^2+3^2=0^2+\left(-3\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=0\\y-2=3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=3\\y-2=0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=0\\y-2=-3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=-3\\y-2=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow-2\le x\le4\left(y\in R\right)\)

Ta có \(S=3x+4y\)

Mà \(x\ge-2;y\ge-1\Leftrightarrow S\ge3\cdot\left(-2\right)+4\cdot\left(-1\right)=-6-4=-10\)

Vậy GTNN của S là \(-10\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2021

Lời giải:

ĐKĐB $\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)-9=0$

$\Leftrightarrow (x-1)^2+(y-2)^2-9=0$

$\Rightarrow (x-1)^2=9-(y-2)^2\leq 9$

$\Rightarrow -3\leq x-1\leq 3$

$\Leftrightarrow -2\leq x\leq 4$

-------------

Đặt $x-1=a; y-2=b$ thì bài toán trở thành:
Cho $a,b$ thực thỏa mãn $a^2+b^2=9$

Tìm min $S=3a+4b+11$

Áp dụng BĐT Bunhiacopxky:

$(3a+4b)^2\leq (a^2+b^2)(3^2+4^2)=9.25$

$\Rightarrow -15\leq 3a+4b\leq 15$

$\Rightarrow 3a+4b\geq -15$

$\Rightarrow S=3a+4b+11\geq -4$

Vậy $S_{\min}=-4$ khi $x=\frac{-4}{5}; y=\frac{-1}{5}$

 

27 tháng 8 2018

a) ta có : \(2x^2+3x\Leftrightarrow x\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-3}{2}\end{matrix}\right.\)

vậy mệnh đề này đúng

b) ta có số nguyên có 2 dạng :

+) \(x=2a\Rightarrow x^2=4x^2⋮2\) \(\Rightarrow x=2a\) là thỏa mãn

+) \(x=2a+1\Rightarrow x^2=4a^2+4a+1⋮̸2\) \(\Rightarrow x=2a+1\) là không thỏa mãn

\(\Rightarrow x=2a⋮2\)

vậy mệnh đề này đúng

c) ta có : vì phương trình \(X^2-aX+\left(a-1\right)\)

có : \(\Delta=a^2-4\left(a-1\right)=a^2-4a+4=\left(a-2\right)^2\ge0\)

luôn có nghiệm \(\Rightarrow\) \(x+y+xy\) có thể bằng \(-1\)

\(\Rightarrow\) mệnh đề này sai

d) cái này thì theo fetmat thì phải .

\(\Rightarrow n=2\) là duy nhất

\(\Rightarrow\) mệnh đề này đúng

vậy có \(3\) mệnh đề đúng

3 tháng 8 2020

Cho: \(x\ne-1\)và \(y\ne-1\)

g/s: \(x+y+xy=-1\)

<=> \(\left(x+xy\right)+\left(y+1\right)=0\)

<=> \(\left(x+1\right)\left(y+1\right)=0\)

<=> \(\orbr{\begin{cases}x=-1\\y=-1\end{cases}}\) vô lí vì trái với gỉa thiết 

Vậy  \(x\ne-1\)và \(y\ne-1\) thì \(x+y+xy\ne-1\)

13 tháng 5 2022

giả sử : \(x+y+xy=-1\) \(\Rightarrow x+y+xy+1=0\)

\(\Rightarrow\left(x+1\right)\left(y+1\right)=0\rightarrow x+1=0\) hoặc \(y+1=0\)

\(\Rightarrow x=-1\) hoặc \(y=-1\) ( trái giả thiết )

vậy nếu \(x\ne-1\) và \(y\ne-1\) thì \(x+y+xy\ne-1\)

29 tháng 6 2019

1, Đúng

2, Sai ( VD \(\sqrt{3^2}⋮3\) nhưng \(\sqrt{3}⋮̸3\))

-----------HẾT----------------

29 tháng 6 2019

1/ Giả sử n là số chẵn : 2k

\(\Rightarrow n^2=4k^2\)

Mà 4k2 chẵn (trái vs gt)

=> đpcm

2/Giả sử \(n⋮̸\) 3

\(\Rightarrow n.n⋮̸\) 3

\(\Leftrightarrow n^2⋮̸\) 3(trái gt)

=> đpcm

3/ Giả sử \(a+b< 2\sqrt{ab}\Leftrightarrow a-2\sqrt{ab}+b< 0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< 0\) (vô lí)

=> đpcm

4/ Giả sử \(x\ne0\Rightarrow x^2\ne0;y\ne0\Rightarrow y^2\ne0\)

\(\Rightarrow x^2+y^2\ne0\) (trái gt)

=> đpcm

Câu 5 bn xem lại đề bài nhé vì nếu x=y=-2 thì x+y+xy= 0\(\ne-1\)

6/ Gọi 2 số thực là a và b

Giả sử \(a=1;b=1\Rightarrow a+b=2\) (trái gt)

=> đpcm

ko thì bn giả sử \(a< 1;b< 1\Rightarrow a+b< 2\) (trái gt) cũng đc

P/s: mk ms hok dạng này nên có sai sót j xin rộng lượng bỏ qua. Đa tạ!

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Phương trình \({x^2} - 2 = 0\) có hai nghiệm là \(\sqrt 2 \) và \( - \sqrt 2 \), nên \(A = \{ \sqrt 2 ; - \sqrt 2 \} \)

Tập hợp \(B = \{ x \in \mathbb{R}|2x - 1 < 0\} \) là tập hợp các số thực \(x < \frac{1}{2}\)

Từ đó \(A \cap B = \{  - \sqrt 2 \} .\)

b) \(A \cap B = \{ (x;y)|\;x,y \in \mathbb{R},y = 2x - 1,y =  - x + 5\} \)

Tức là \(A \cap B\)là tập hợp các cặp số (x; y) thỏa mãn hệ phương trình: \(\left\{ \begin{array}{l}y = 2x - 1\\y =  - x + 5\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}2x - 1 =  - x + 5\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x = 6\\y = 2x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 3\end{array} \right.\)

Vậy \(A \cap B = \{ (2;3)\} .\)

c) A là tập hợp các hình thoi, B là tập hợp các hình chữ nhật.

\(A \cap B\) là tập hợp các hình vừa là hình chữ nhật vừa là hình thoi.

Một tứ giác bất kì thuộc \(A \cap B\) thì nó là hình chữ nhật và có 2 cạnh kề bằng nhau (hình vuông)

Do đó \(A \cap B\) là tập hợp các hình vuông.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Phủ định của mệnh đề A là mệnh đề “\(\exists x \in \mathbb{R},{x^2} + 4x + 5 = 0\)”

Phủ định của mệnh đề B là mệnh đề “\(\exists x \in \mathbb{R},{x^2} + x < 1\)”

Phủ định của mệnh đề C là mệnh đề “\(\forall x \in \mathbb{Z},2{x^2} + 3x - 2 \ne 0\)”

Phủ định của mệnh đề D là mệnh đề “\(\forall x \in \mathbb{Z},{x^2} \ge x\)”