Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3, \(P=a+b+\frac{1}{2a}+\frac{2}{b}\)
=\(\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\)
AD bđt cosi vs hai số dương có:
\(\frac{1}{2a}+\frac{a}{2}\ge2\sqrt{\frac{1}{2a}.\frac{a}{2}}=2\sqrt{\frac{1}{4}}=1\)
\(\frac{b}{2}+\frac{2}{b}\ge2\sqrt{\frac{b}{2}.\frac{2}{b}}=2\)
Có \(\frac{a+b}{2}\ge\frac{3}{2}\) (vì a+b \(\ge3\))
=> \(P=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\ge1+2+\frac{3}{2}\)
<=> P \(\ge4.5\)
Dấu "=" xảy ra <=>\(\left\{{}\begin{matrix}\frac{1}{2a}=\frac{a}{2}\\\frac{b}{2}=\frac{2}{b}\\a+b=3\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a^2=1\\b^2=4\\a+b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=1\\b=2\\a+b=3\end{matrix}\right.\)
=> a=2,b=3
Vậy minP=4.5 <=>a=1,b=2
Áp dụng cô si
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\\\frac{1}{c}+\frac{1}{b}\ge2\sqrt{\frac{1}{cb}}\\\frac{1}{a}+\frac{1}{c}\ge2\sqrt{\frac{1}{ac}}\end{cases}}\)\(\Rightarrow\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}\)
\("="\Leftrightarrow a=b=c=0\)
\(\hept{\begin{cases}\sqrt{x}\le\frac{x+1}{2}\\\sqrt{y-1}\le\frac{y-1+1}{2}\\\sqrt{z-2}\le\frac{z-2+1}{2}\end{cases}}\)\(\Rightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+1+y-1+1+z-2+1}{2}\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+y+z}{2}\)
\("="\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
Sửa ĐK của c) : a, b, c > 0
Áp dụng bất đẳng thức Cauchy ta có :
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}=\frac{2}{\sqrt{ab}}\)
\(\frac{1}{b}+\frac{1}{c}\ge2\sqrt{\frac{1}{bc}}=\frac{2}{\sqrt{bc}}\)
\(\frac{1}{c}+\frac{1}{a}\ge2\sqrt{\frac{1}{ca}}=\frac{2}{\sqrt{ca}}\)
Cộng các vế tương ứng
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ab}}+\frac{2}{\sqrt{bc}}+\frac{2}{\sqrt{ca}}\)
=> \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)
=> đpcm
Đẳng thức xảy ra khi a = b = c
c) theo bunhia ta có:
\(VT^2\le3\left(x+y+y+z+z+x\right)=6\)
\(\Rightarrow VT\le\sqrt{6}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\y>0\\x\ne y\end{matrix}\right.\)
\(M=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}}.\left(\sqrt{x}-\sqrt{y}\right)-x\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)-x\)
\(=x-y-x=-y\)
\(M=-1\Rightarrow-y=-1\Rightarrow y=1\)
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
\(P=\left(\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}+\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}\right):\left(\dfrac{x+y+2xy}{1-xy}+1\right)\)
Điều kiện : \(xy\ge0\) hoặc \(xy\le0\) ; \(xy\ne1\); \(x\ge0\);\(y\ge0\)
\(P=\left(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)}{\left(1+\sqrt{xy}\right)\left(1-\sqrt{xy}\right)}\right):\left(\dfrac{x+2xy+y+1-xy}{1-xy}\right)\)
\(P=\left(\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}\right):\left(\dfrac{x+xy+y+1}{1-xy}\right)\)
\(P=\left(\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\right):\left(\dfrac{x\left(1+y\right)+\left(y+1\right)}{1-xy}\right)\)
\(P=\left(\dfrac{2\sqrt{x}\left(1+y\right)}{1-xy}\right):\left(\dfrac{\left(1+y\right)\left(x+1\right)}{1-xy}\right)\)
\(P=\dfrac{2\sqrt{x}\left(1+y\right)}{1-xy}.\dfrac{1-xy}{\left(1+y\right)\left(x+1\right)}\)
\(P=\dfrac{2\sqrt{x}}{x+1}\)
b) ta có :\(x=\dfrac{2}{2+\sqrt{3}}=\dfrac{2\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\dfrac{4-2\sqrt{3}}{4-3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
thay \(x=\left(\sqrt{3}-1\right)^2\) vào biểu thức P
ta được : \(P=\dfrac{2\sqrt{\left(\sqrt{3}-1\right)^2}}{\left(\sqrt{3}-1\right)^2+1}\)
\(P=\dfrac{2\left|\sqrt{3}-1\right|}{4-2\sqrt{3}+1}=\dfrac{2\sqrt{3}-2}{5-2\sqrt{3}}\)
\(P=\dfrac{\left(2\sqrt{3}-2\right)\left(5+2\sqrt{3}\right)}{\left(5-2\sqrt{3}\right)\left(5+2\sqrt{3}\right)}=\dfrac{10\sqrt{3}+12-10-4\sqrt{3}}{25-12}\)
\(P=\dfrac{6\sqrt{3}+2}{13}\)
c) để P\(\le\)1 thì \(\dfrac{2\sqrt{x}}{x+1}\le1\)
\(\Leftrightarrow\dfrac{2\sqrt{x}}{x+1}-1\le0\)
\(\Leftrightarrow\dfrac{2\sqrt{x}-x-1}{x+1}\le0\)
\(\Leftrightarrow\dfrac{-\left(x-2\sqrt{x}+1\right)}{x+1}\le0\)
\(\Leftrightarrow\dfrac{-\left(x-1\right)^2}{x+1}\le0\)
Vì \(-\left(x-1\right)^2\le0\) nên x + 1 \(\ge\) 0
\(\Leftrightarrow\) x \(\ge\) -1
đúng thì cho xin 1 like nha
\(A=\dfrac{x\sqrt{x}+x-y+y\sqrt{y}-xy\sqrt{x}-xy\sqrt{y}}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{x\sqrt{x}\left(1-y\right)+x\left(1-y\sqrt{y}\right)-y\left(1-\sqrt{y}\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{\left(1-\sqrt{y}\right)\left[x\sqrt{x}\left(1+\sqrt{y}\right)+x+x\sqrt{y}+xy-y\right]}{\left(1+\sqrt{x}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{x\sqrt{x}+x\sqrt{xy}+x+x\sqrt{y}+xy-y}{\left(1+\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{x\left(\sqrt{x}+1\right)+x\sqrt{y}\left(\sqrt{x}+1\right)+y\left(x-1\right)}{\left(1+\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{x+x\sqrt{y}+y\sqrt{x}-y}{\sqrt{x}+\sqrt{y}}=\sqrt{x}-\sqrt{y}+\sqrt{xy}\)
Để A=2 thì x=2; y=2