\(x+y\ge\frac{34}{35}\).Tìm min

\(P=3x+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
19 tháng 5 2021

\(P=3x+4y+\frac{2}{5x}+\frac{8}{7y}\)

\(=\frac{1}{2}x+\frac{1}{2}y+\frac{5}{2}x+\frac{2}{5x}+\frac{7}{2}y+\frac{8}{7y}\)

\(\ge\frac{1}{2}.\frac{34}{35}+2\sqrt{\frac{5}{2}x.\frac{2}{5x}}+2\sqrt{\frac{7}{2}y.\frac{8}{7y}}\)

\(=\frac{227}{35}\)

Dấu \(=\)khi \(x=\frac{2}{5},y=\frac{4}{7}\).

k ko biết

2 tháng 11 2017

treen toán ko dc đưa những hình ảnh này. OK

NV
21 tháng 10 2019

a/ ĐKXĐ: ....

\(\Leftrightarrow x^2-8x+16+x+14-6\sqrt{x+5}=0\)

\(\Leftrightarrow\left(x-4\right)^2+\frac{\left(x+14\right)^2-36\left(x+5\right)}{x+14+6\sqrt{x+5}}=0\)

\(\Leftrightarrow\left(x-4\right)^2+\frac{x^2-8x+16}{x+14+6\sqrt{x+5}}=0\)

\(\Leftrightarrow\left(x-4\right)^2\left(1+\frac{1}{x+14+6\sqrt{x+5}}\right)=0\)

2/

\(A=\frac{5x}{2}+\frac{2}{5x}+\frac{7y}{2}+\frac{8}{7y}+\frac{1}{2}\left(x+y\right)\)

\(A\ge2\sqrt{\frac{10x}{10x}}+2\sqrt{\frac{56y}{14y}}+\frac{1}{2}.\frac{34}{35}=\frac{227}{35}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{2}{5}\\y=\frac{4}{7}\end{matrix}\right.\)

17 tháng 10 2020

1.

\(PT\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{x+5}-3\right)^2=0\left(x\ge-5\right)\)

\(\Leftrightarrow x-4=\sqrt{x+5}-3=0\Leftrightarrow x=4\).

22 tháng 12 2017

Không mặn mà với số này cho lắm

\(A=\dfrac{5}{2}x+\dfrac{2}{5x}+\dfrac{7}{2}y+\dfrac{8}{7y}+\dfrac{1}{2}\left(x+y\right)\)

\(A\ge2\sqrt{\dfrac{5}{2}x.\dfrac{2}{5x}}+2\sqrt{\dfrac{7}{2}y.\dfrac{8}{7y}}+\dfrac{1}{2}.\dfrac{34}{35}\)

\(A\ge2+4+\dfrac{17}{35}=\dfrac{227}{35}\)

GTNN là \(\dfrac{227}{35}\Leftrightarrow\)\(\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=\dfrac{4}{7}\end{matrix}\right.\)

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

18 tháng 10 2020

Ta có:

\(P=5x+4y+\frac{8}{x}+\frac{9}{y}\)

\(P=\left(\frac{8}{x}+2x\right)+\left(\frac{9}{y}+y\right)+3\left(x+y\right)\)

Áp dụng BĐT Cauchy ta được:

\(P\ge2\sqrt{\frac{8}{x}\cdot2x}+2\sqrt{\frac{9}{y}\cdot y}+3\cdot5\)

\(=2\cdot4+2\cdot3+15=29\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy Min(P) = 29 khi \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)

18 tháng 10 2020

Cảm ơn ạ

3 tháng 1 2016

1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)

\(\)

3 tháng 1 2016

phải là \(\le12\)

5 tháng 12 2016

A (min) khi

\(\frac{4}{x}=\frac{1}{4y}=>x=16y\)

\(y=\frac{5}{4.17};x=\frac{5.16}{4.17}\)\(x.y=\frac{5.5}{17.17}\)

A(min)=2.\(2\sqrt{\frac{1}{xy}}=2.\frac{17}{5}=\frac{34}{5}\)

7 tháng 12 2016

Bạn có thể giải thích rõ hơn cho mình dc ko?? Mình ko hiểu cho lắm!

5 tháng 6 2017

Áp dụng nè : \(\frac{2}{x^2+y^2}+\frac{2}{2xy}\ge\frac{8}{\left(x+y\right)^2}\ge\frac{1}{2}\)

5 tháng 6 2017

khó was