
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A^2=\frac{\left(x-y\right)^2}{\left(x+y\right)^2}=\frac{x^2+y^2-2xy}{x^2+y^2+2xy}\)
Từ \(\frac{x^2+y^2}{xy}=\frac{25}{12}\Rightarrow x^2+y^2=\frac{25}{12}xy\)
Suy ra \(A^2=\frac{\frac{25}{12}xy-2xy}{\frac{25}{12}xy+2xy}=\frac{\frac{1}{12}xy}{\frac{49}{12}xy}=\frac{1}{49}\Rightarrow A=\pm\frac{1}{7}\)
Do \(x< y< 0\) nên \(x-y< 0\) và \(x+y< 0\) \(\Rightarrow A>0\)
Vậy \(A=\frac{1}{7}\)

Ta có
\(y-x=7\Leftrightarrow y^2-2xy+x^2=49\)
\(\Leftrightarrow\left(y^2+2xy+x^2\right)-4xy=49\)
\(\Leftrightarrow\left(x+y\right)^2-4xy=49\)
\(\Leftrightarrow\left(x+y\right)^2-4.60=49\)
\(\Leftrightarrow\left(x+y\right)^2=289\)
\(\Leftrightarrow x+y=17\)
Dùng hiệu tỉ là ra x , y ngay ak bạn , nhớ loại m kết hợp điều kiện

Có: \(\frac{x^2+y^2}{xy}=\frac{25}{12}\)
\(\Rightarrow x^2+y^2=\frac{25xy}{12}\)
Có: \(P=\frac{x-y}{x+y}\)
\(\Rightarrow P^2=\frac{x^2+y^2-2xy}{x^2+y^2+2xy}=\frac{\frac{25xy}{12}-2xy}{\frac{25xy}{12}+2xy}=\frac{\frac{xy}{12}}{\frac{49xy}{12}}=\frac{1}{49}\)
VÌ: \(x< y< 0\Rightarrow x-y< 0;x+y< 0\)
=> \(P>0\)
=> \(P=\frac{1}{7}\)
mk chưa hiểu ở phần thứ 3 của bước thứ 4 bn trình bày rõ hơn đc ko

áp dụng hằng đẳng thức (a+b)2=a2+2ab+b2 vào (x+y)2 ta được:
\(\left(x+y\right)^2=x^2+2xy+y^2=x^2+y^2+2xy\)
ta có : xy=27
=>2xy=54
thay 2xy=54 và x2+y2=29 vào bt x2+y2+2xy ta được
\(29+54=83\)
vậy giá trị của biểu thức (x+y)2 tại x2+y2=29 và xy=27 là 83

Ta có: x - y = 2 => x2 + y2 - 2xy = 2 => (x + y)2 - 2xy - 2xy = 2
=> (x + y)2 - 4xy = 2
=> (x + y)2 - 4.99 = 2
=> (x + y)2 = 398
=> x + y = \(\sqrt{398}\)

Theo bài ra ta có:
\(x^2y+xy^2+x+y=2010\)
\(\Rightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)
\(\Rightarrow\left(x+y\right)\left(xy+1\right)=2010\)
\(\Rightarrow\left(x+y\right)\left(11+1\right)=2010\)
\(\Rightarrow12\left(x+y\right)=2010\Rightarrow x+y=2010\div12=167,5\)
Ta có: \(A=x^4+y^4=\left(x^2\right)^2+2x^2y^2+\left(y^2\right)^2-2x^2y^2\)
\(=\left(x^2+y^2\right)^2-2\left(xy\right)^2\)
\(=\left[\left(x+y\right)^2-2xy\right]^2-2\times11^2\)
\(\Rightarrow\left[\left(167,5\right)^2-2.11\right]^2-245\)
\(\Rightarrow\left(28056,25-22\right)^2-245=785918928,0625\)

`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.
`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`
`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`
`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.


ta có : (x-y)2=16
x2-2xy+y2=16
x2+y2=5.2+16
x2+2xy+y2-2xy=26
(x+y)2-2.5=26
(x+y)2-10=26
(x+y)2=26+10=36
suy ra x+y=6
x+y= -6
ta có nếu: x-y=4=>y=x -4
=>x+y= -6
<=>x+x -4= -6
2x= -2=>x= -1
nếu x+y=6
<=>x+x -4=6
2x=10
=> x=5
mà x<0 => x+y=-6
(x + y)2 = 272
<=> x2 + y2 + 2xy = 729
<=> x2 + y2 + 2.180 = 729
<=> x2 + y2 = 369
<=> x2 + y2 - 2xy = 369 - 2xy
<=> (x - y)2 = 9
Mà x < y => x - y = -3