Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=y+1\Leftrightarrow x-y=1\)
\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)
Mà \(x-y=1\)
\(\Leftrightarrow x^3-y^3=x^2+xy+y^2=x^2-2xy+y^2+3xy=\left(x-y\right)^2+3xy=3xy+1\left(đpcm\right)\)
Áp dụng HĐT :(a-b)3 =a 3-3a2b+3ab2 -b3
=> a3 -b3 = (a-b)3 +3ab(a-b)
Biến đổi vế phải: x3 -y3 = (x-y) 3 + 3xy(x-y)
= 1+3xy = Vế trái (vì x-y=1)(đpcm)
Ta có:
x3-y3=(x-y)(x2+xy+y2)
=1(x2-2xy+y2+3xy)
=(x-y)2+3xy
=1+3xy => ĐPCM
Đặt B=x3+y3=1-3xy
Ta có (x+y)3=x3+y3+3x2y+3xy2
<=>(x+y)3=x3+y3+3xy(x+y)
Mà x+y=1 nên
1=x3+y3+3xy.1
Vậy B=1
\(\dfrac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}=\dfrac{1}{x-y}\)
\(VT=\dfrac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)
\(=\dfrac{2x^2+2xy+xy+y^2}{\left(2x^3+x^2y\right)+\left(-2xy^2-y^3\right)}\)
\(=\dfrac{\left(2x^2+2xy\right)+\left(xy+y^2\right)}{x^2\left(2x+y\right)-y^2\left(2x+y\right)}\)
\(=\dfrac{2x\left(x+y\right)+y\left(x+y\right)}{\left(x^2-y^2\right)\left(2x+y\right)}\)
\(=\dfrac{\left(2x+y\right)\left(x+y\right)}{\left(x^2-y^2\right)\left(2x+y\right)}\)
\(=\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{1}{x-y}=VP\left(đpcm\right)\)
\(a,\left(x^3+y^3\right)=\left(x+y\right)\left(x^2-xy+y^2\right)=x^2+2xy+y^2-3xy=\left(x+y\right)^2-3xy=1-3xy\left(ĐPCM\right)\)
\(b,x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=x^2-2xy+y^2+3xy=\left(x-y\right)^2+3xy=1+3xy\left(ĐPCM\right)\)
Trả lời:
x3 + y3 = ( x + y )( x2 - xy + y2 ) = ( x + y )( x2 + 2xy + y2 - 3xy ) = ( x + y )[ ( x + y )2 - 3xy ]
Thay x + y = 1 vào biểu thức trên, ta có:
1.( 12 - 3xy ) = 1 - 3xy (đpcm)