\(P=x^2.y^2.\left(x^2+y^2\right)\le2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2016

Xét VT = 1/ab + 1/(a² + b²) = 1/2ab + 1/(a² + b²) + 1/2ab 

Áp dụng bđt: 1/x + 1/y ≥ 4/(x + y) với x, y >0 và với a + b = 1 

ta có: 1/2ab + 1/(a² + b²) ≥ 4/(2ab + a² + b²) = 4/(a + b)² = 4 

Áp dụng bđt 4xy ≤ (x + y)² 

ta có: 1/2ab = 2/4ab ≥ 2/(a + b)² = 2 => VT ≥ 4 + 2 = 6 

Dấu "=" xảy ra khi a = b và a + b = 1 nên a = b = ½ 

4 tháng 6 2016

Nhók Silver Bullet: đúng là "bản sao" của VICTOR_Nobita Kun

10 tháng 5 2019

Áp dụng côsi cho 3 số ta có 

\(2xy+2xy+\left(x^2+y^2\right)\ge3\sqrt[3]{4x^2y^2\left(x^2+y^2\right)}\) 

=> \(4+2xy\ge3\sqrt[3]{4x^2y^2\left(x^2+y^2\right)}\)

Mà \(2xy\le\frac{\left(x+y\right)^2}{2}=2\)

=> \(3\sqrt[3]{4x^2y^2\left(x^2+y^2\right)}\le6\)

=> \(x^2y^2\left(x^2+y^2\right)\le2\)( Điều phải chứng minh)

Dấu bằng xảy ra khi x=y=1

10 tháng 5 2019

Cách khác nè

\(x^2y^2\left(x^2+y^2\right)=\frac{1}{2}xy.\left(x^2+y^2\right)2xy\le\frac{1}{2}.\frac{\left(x+y\right)^2}{4}.\frac{\left(x+y\right)^4}{4}=\frac{1}{2}.\frac{4}{4}.\frac{16}{4}=2\left(đpcm\right)\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}x=y\\x+y=2\end{cases}\Leftrightarrow x=y=1}\) 

:))

3 tháng 5 2017

mình cũng muốn lắm nhưng mình mới lớp 7

23 tháng 3 2022

Đề chép sai rồi kìa.

23 tháng 3 2022

\(\left(x+\frac{2}{x}\right)^2+\left(y+\frac{2}{y}\right)^2=x^2+y^2+\frac{4}{x^2}+\frac{4}{y^2}+4+4\)

\(=\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(\frac{3}{x^2}+3x+3x\right)+\left(\frac{3}{y^2}+3y+3y\right)-6\left(x+y\right)+8\)

\(\ge2+2+9+9-6.2+8=18\)

AH
Akai Haruma
Giáo viên
6 tháng 11 2017

Lời giải:

Áp dụng BĐT Cô-si với \(x; \frac{1}{x}\) là hai số dương:

\(x+\frac{1}{x}\geq 2\sqrt{x.\frac{1}{x}}=2\)

\(\Rightarrow \left(x+\frac{1}{x}\right)^2\geq 4\)

Tương tự, \(\left(y+\frac{1}{y}\right)^2\geq 4\)

\(\Rightarrow \left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\geq 8\) (đpcm)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{1}{x}\\ y=\frac{1}{y}\end{matrix}\right.\Leftrightarrow x=y=1\)

P.s: Có thể thấy điều kiện $x+y=2$ là dư thừa.

5 tháng 1 2019

Hem thừa .-.

\(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\ge\dfrac{\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)^2}{2}\ge\dfrac{\left(x+y+\dfrac{4}{x+y}\right)^2}{2}=8\)

13 tháng 8 2018

Áp dụng BĐT cauchy schawrz dạng engel ta có:

\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge\frac{\left(y+z+x+z+x+y\right)^2}{x+y+z}=\frac{4\left(x+y+z\right)^2}{x+y+z}=4\left(x+y+z\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

3 tháng 9 2018

Áp dụng BĐT cauchy schawrz dạng engel, ta có:

\(\frac{\left(y+z\right)^2}{x}+\frac{\left(x+z\right)^2}{y}+\frac{\left(x+y\right)^2}{z}\ge\frac{\left(y+z+x+z+x+y\right)^2}{x+y+z}=\frac{4\left(x+y+z\right)^2}{x+y+z}=4\left(x+y+z\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

17 tháng 6 2016

áp dụng bất đẳng thức cô si cho 2 số dương x, y ta được:

\(x+y\ge2\sqrt{xy}\)

\(\Leftrightarrow\left(\frac{x+y}{2}\right)^2\ge xy\)

\(\Leftrightarrow\left(\frac{2}{2}\right)^2\ge xy\Leftrightarrow1\ge xy\)

ta có : \(x^2+y^2=\left(x+y\right)^2-2xy=4-2xy\le4-2\)

\(\Leftrightarrow x^2+y^2\le2\)  (1)

áp dụng bất đẳng thức cô si với 2 số dương x2,y2 ta được:

\(x^2+y^2\ge2\sqrt{x^2y^2}\)

\(\Leftrightarrow\left(\frac{x^2+y^2}{2}\right)^2\ge x^2y^2\)

mà \(\left(\frac{x^2+y^2}{2}\right)^2\le\left(\frac{2}{2}\right)^2=1\)

nên: \(x^2y^2\le1\)  (2)

nhân 1 và 2 vế theo vế ta được:

\(x^2y^2\left(x^2+y^2\right)\le2\)

dấu "='' xảy ra khi và chỉ khi x=y=1

 

30 tháng 8 2017

Biến đổi tương đương :

\(2\left(x^5+y^5\right)\ge\left(x^2+y^2\right)\left(x^3+y^3\right)\)

\(\Leftrightarrow2x^5+2y^5\ge x^5+x^2y^3+y^2x^3+y^5\)

\(\Leftrightarrow2x^5+2y^5-x^5-x^2y^3-y^2x^3-y^5\ge0\)

\(\Leftrightarrow x^5+y^5-x^2y^2\left(x+y\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-x^2y^2\left(x+y\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)\left(x^4-x^3y-xy^3+y^4\right)\ge0\)

\(\Leftrightarrow x^4-x^3y-xy^3+y^4\ge0\)(do x;y > 0)

\(\Leftrightarrow x^4-2x^3y+x^2y^2+x^3y-2x^2y^2+xy^3+y^4-2xy^3+x^2y^2\ge0\)

\(\Leftrightarrow x^2\left(x^2-2xy+y^2\right)+xy\left(x^2-2xy+y^2\right)+y^2\left(x^2-2xy+y^2\right)\ge0\)

\(\Leftrightarrow\left(x^2+xy+y^2\right)\left(x^2-2xy+y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\) (luôn đúng \(\forall x;y>0\))

Vậy bđt đã đc chứng minh