Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Tìm GTNN :
Ta có : \(\frac{x}{y+1}+\frac{y}{x+1}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}\ge\frac{\left(x+y\right)^2}{2xy+\left(x+y\right)}\ge\frac{1}{\frac{\left(x+y\right)^2}{2}+1}=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
2) Áp dụng BĐT Svacxo ta có :
\(\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge\frac{\left(a+b+c\right)^2}{3+a+b+c}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
2/ Áp dụng bđt Cô- si cho 2 số dương ta có :
\(\frac{a^2}{1+b}+\frac{1+b}{4}\ge2\sqrt{\frac{a^2}{1+b}\frac{1+b}{4}}=a\)
Tương tự ta có \(\frac{b^2}{1+c}+\frac{1+c}{4}\ge b;\frac{c^2}{1+a}+\frac{1+a}{4}\ge c\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge a+b+c-\left(\frac{1+b}{4}+\frac{1+c}{4}+\frac{1+a}{4}\right)\)
\(\Rightarrow\frac{a^2}{1+b}+\frac{b^2}{1+c}+\frac{c^2}{1+a}\ge3-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=3-\frac{1}{4}.3-\frac{3}{4}=\frac{3}{2}\)
Dấu "=" xảy ra <=> a=b=c=1
\(P=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)\)
\(\Rightarrow P\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{4xy}{4xz}}=\frac{4}{1^2}+4=8\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
dùng bđt phụ \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\) với bđt Cô-si nhé
a/ Bạn cứ khai triển biến đổi tương đương thôi (mà làm biếng lắm)
b/ Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)
\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)\ge\frac{1}{2}.3\sqrt[3]{xyz}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
cảm ơn bạn nhưng nạ có thể giải nốt cậu a hộ mình đc ko
Ta có : \(\frac{x}{4y^2+1}=x-\frac{4xy^2}{4y^2+1};\frac{y}{4x^2+1}=y-\frac{4x^2y}{4x^2+1}\)
Áp dụng BĐT Cauchy ta có :
\(4y^2+1\ge4y;4x^2+1\ge4x\)
\(\Rightarrow x-\frac{4xy^2}{4y^2+1}+y-\frac{4x^2y}{4x^2+1}\ge x-\frac{4xy^2}{4y}+y-\frac{4x^2y}{4x}\)
\(=x+y-2xy=2xy\)
Đến đây ta áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(x+y=4xy\Leftrightarrow\frac{1}{xy}=\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=4\)
\(\Leftrightarrow\frac{1}{xy}\le4\Leftrightarrow2xy\ge\frac{1}{2}\)
\(\Leftrightarrow\frac{x}{4y^2+1}+\frac{y}{4x^2+1}\ge\frac{1}{2}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\4y^2=1\\4x^2=1\end{cases}\Leftrightarrow x=y=\frac{1}{2}}\)
Bạn trên đã chứng minh \(xy\ge\frac{1}{4}\) rồi nên mình xin phép không trình bày
Áp dụng BĐT Cauchy Schwarz ta dễ có:
\(LHS=\frac{x^2}{4xy^2+x}+\frac{y^2}{4x^2y+y}\)
\(\ge\frac{\left(x+y\right)^2}{4xy\left(x+y\right)+\left(x+y\right)}=\frac{\left(x+y\right)^2}{\left(x+y\right)^2+\left(x+y\right)}\)
Ta cần đi chứng minh:
\(\frac{\left(x+y\right)^2}{\left(x+y\right)^2+\left(x+y\right)}\ge\frac{1}{2}\)
\(\Leftrightarrow\left(x+y\right)^2\ge x+y\Leftrightarrow x+y\ge1\)
Điều này là hiển nhiên vì theo AM - GM ta có:\(x+y\ge2\sqrt{xy}=1\)
Vậy ta có đpcm