Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
30 30 x y A B C
a,Do \(\widehat{yOB}\)<\(\widehat{yOx}\)và tia OB nằm trong góc \(\widehat{xOy}\)
\(\Rightarrow\)Tia OB nằm giữa hai tia Ox,Oy
\(\Rightarrow\)\(\Rightarrow\widehat{yOB}\)+\(\widehat{BOx}\)=\(\widehat{xOy}\)
\(\Rightarrow30^o+\widehat{BOx}\)\(=90^o\)
\(\Rightarrow\widehat{BOx}\)\(=60^o\)
Do \(\widehat{xOA}\)<\(\widehat{xOB}\)và hai tia OA,OB cùng nằm trong \(\widehat{xOy}\)
\(\Rightarrow\widehat{xOA}+\widehat{AOB}=\widehat{xOB}\)
\(\Rightarrow30^o+\widehat{AOB}=60^o\)
\(\Rightarrow\widehat{AOB}=30^o\)
Do \(\widehat{xOA}=\widehat{AOB}\)\(=\frac{\widehat{BOx}}{2}=\frac{60^o}{2}=30^o\)
\(\Rightarrow\)Tia OA là tia phân giác của \(\widehat{xOB}\)
b, mk chịu
a: \(\widehat{BOA}=90^0-30^0-30^0=30^0\)
\(\Leftrightarrow\widehat{BOA}=\widehat{xOA}\)
hay OA là tia phân giác của góc BOx
b: \(\widehat{COy}=\widehat{AOy}=60^0\)
\(\Leftrightarrow\widehat{COB}=\widehat{COy}+\widehat{yOB}=60^0+30^0=90^0\)
hay OB\(\perp\)OC
a) bOy^ + bOx^ = xOy^
Mà bOy^ = bOx^
=> 2* bOy^ = 40o
bOy^ =20o
b) bOy^ = bOx^ = 20o
=> xOa^ = bOx^ + bOa^ = 20o + 90o = 110o
Oa nằm trong góc yOz (1)
=> xOa^ + aOz^ = xOz^
aOz^ = xOz^ - xOa^ = 180o - 110o = 70o
Ta có: yOb^ + yOa^ = bOa^
yOa^ = bOa^ - yOb^ = 90o - 20o = 70o
=> aOz^ = aOy^ (2)
Từ (1) và (2) => Oa là tia phân giác của yOz^
Cần giúp nữa ko