Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔAEB = ΔCED ⇒ EA = EC (hai cạnh tương ứng)
ΔOAE và ΔOCE có
OA = OC
EA = EC
OE cạnh chung
⇒ ΔOAE = ΔOCE (c.c.c)
⇒ (hai góc tương ứng)
Vậy OE là tia phân giác của góc xOy.
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{O}\) chung
OD=OC
Do đó: ΔOAD=ΔOBC
Suy ra: AD=BC
b: Ta có: ΔOAD=ΔOBC
nên \(\widehat{OAD}=\widehat{OBC}\)
\(\Leftrightarrow180^0-\widehat{OAD}=180^0-\widehat{OBC}\)
hay \(\widehat{EAB}=\widehat{ECD}\)
Xét ΔEAB và ΔECD có
\(\widehat{EAB}=\widehat{ECD}\)
AB=CD
\(\widehat{EBA}=\widehat{EDC}\)
Do đó: ΔEAB=ΔECD
c: Ta có: ΔEAB=ΔECD
nên EB=ED
Xét ΔOEB và ΔOED có
OE chung
EB=ED
OB=OD
Do đó: ΔOEB=ΔOED
Suy ra: \(\widehat{BOE}=\widehat{DOE}\)
hay OE là tia phân giác của góc xOy
a)
ΔOAD và ΔOCB có:
OA = OC (gt)
Góc O chung
OD = OB (gt)
⇒ ΔOAD = ΔOCB (c.g.c)
⇒ AD = BC (hai cạnh tương ứng).
c) Ta có:
ΔEAB=ΔECD
nên EB=ED
Xét ΔOEB và ΔOED có
OE chung
EB=ED
OB=OD
Do đó: ΔOEB=ΔOED
Suy ra: BOE=DOE
hay OE là tia phân giác của góc xOy
a, Vì \(\left\{{}\begin{matrix}OA=OB\\AM=MB\\OM.chung\end{matrix}\right.\) nên \(\Delta OAM=\Delta OBM\left(c.c.c\right)\)
b, Vì \(\Delta OAM=\Delta OBM\) nên \(\widehat{AOM}=\widehat{BOM}\)
Do đó OM là p/g góc xOy
mãi mới có 1 bài toán lớp 7
hình :
xét \(\Delta OAI\)và \(\Delta OBI\)
OA = OB ( gt)
IA=IB ( I là trung điểm của AB)
OI - cạnh chung
=>\(\Delta OAI\)=\(\Delta OBI\)(c.c.c)
vì \(\Delta OAI\)=\(\Delta OBI\)
=>\(\widehat{AOI}\)=\(\widehat{BOI}\)(2 góc tương ứng)
OI nằm giữa 2 tia Ox và Oy
=> OI là pg của \(\widehat{xOy}\)
câu 2 và 3 dễ rồi bạn tự làm đi được ko z mik lười lắm
a,Xét \(\Delta\)OAH và \(\Delta\)OBH có:
OA=OB
góc AOH=góc BOH
OH chung
\(\Rightarrow\)\(\Delta\)OAH=\(\Delta\)OBH(c.g.c)
b,Vì \(\Delta\)OAH=\(\Delta\)OBH\(\Rightarrow\)góc AHO=gócBHO(2 góc tương ứng)\(\Rightarrow\)HOlà tia phân giác của góc AHB
a) Xét ΔOAH và ΔOBH có
OA=OB(gt)
\(\widehat{AOH}=\widehat{BOH}\)(OH là tia phân giác của \(\widehat{AOB}\))
OH chung
Do đó: ΔOAH=ΔOBH(c-g-c)
b) Ta có: ΔOAH=ΔOBH(cmt)
nên \(\widehat{AHO}=\widehat{BHO}\)(hai góc tương ứng)
mà tia HO nằm giữa hai tia HA,HB
nên HO là tia phân giác của \(\widehat{AHB}\)(đpcm)