Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6.
\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\)
\(\Leftrightarrow cos4x=4cos2x+5\)
\(\Leftrightarrow2cos^22x-1=4cos2x+5\)
\(\Leftrightarrow cos^22x-2cos2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
7.
Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn
8.
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\)
9.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}-1\le t\le1\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Rightarrow mt+\frac{t^2-1}{2}+1=0\)
\(\Leftrightarrow t^2+2mt+1=0\)
Pt đã cho có đúng 1 nghiệm thuộc \(\left[-1;1\right]\) khi và chỉ khi: \(\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\)
10.
\(\frac{\sqrt{3}}{2}cos5x-\frac{1}{2}sin5x=cos3x\)
\(\Leftrightarrow cos\left(5x-\frac{\pi}{6}\right)=cos3x\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{6}=3x+k2\pi\\5x-\frac{\pi}{6}=-3x+k2\pi\end{matrix}\right.\)
b/
\(cos4x=\frac{1}{2}+\frac{1}{2}cos6x\)
\(\Leftrightarrow2\left(2cos^22x-1\right)=1+4cos^32x-3cos2x\)
\(\Leftrightarrow4cos^32x-4cos^22x-3cos2x+3=0\)
\(\Leftrightarrow\left(cos2x-1\right)\left(4cos^22x-3\right)=0\)
\(\Leftrightarrow\left(cos2x-1\right)\left(2cos4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos4x=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)
\(\Rightarrow x=\left\{0;-\frac{11\pi}{12};-\frac{5\pi}{12};\frac{\pi}{12};\frac{7\pi}{12};-\frac{7\pi}{12};-\frac{\pi}{12};\frac{5\pi}{12};\frac{11\pi}{12}\right\}\)
Bạn tự cộng lại
c/
\(\Leftrightarrow2cos^2x-1-\left(2m+1\right)cosx+m+1=0\)
\(\Leftrightarrow2cos^2x-\left(2m+1\right)cosx+m=0\)
\(\Leftrightarrow2cos^2x-cosx-2mcosx+m=0\)
\(\Leftrightarrow cosx\left(2cosx-1\right)-m\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left(cosx-m\right)\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=m\end{matrix}\right.\)
Do \(cosx=\frac{1}{2}\) vô nghiệm trên \(\left(\frac{\pi}{2};\frac{3\pi}{2}\right)\) nên pt có nghiệm khi và chỉ khi \(cosx=m\) có nghiệm trên khoảng đã cho
Mà \(-1< cosx< 0\Rightarrow-1< m< 0\)
1/ ĐKXĐ: \(\cos2x\ne0\)
\(\frac{\cos4x}{\cos2x}=\frac{\sin2x}{\cos2x}\)\(\Leftrightarrow\cos4x-\sin2x=0\)
\(\Leftrightarrow2\cos^22x-1-\sin2x=0\)
\(\Leftrightarrow2-2\sin^22x-1-\sin2x=0\)
\(\Leftrightarrow2\sin^22x+\sin2x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\frac{1}{2}=\sin\frac{\pi}{6}\\\sin2x=-1=\sin\frac{-\pi}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{6}+2k\pi\\2x=\frac{5\pi}{6}+2k\pi\\2x=\frac{-\pi}{2}+2k\pi\left(l\right)\\2x=\frac{3\pi}{2}+2k\pi\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)
2/ \(\sin2.4x+\cos4x=1+2\sin2x.\cos\left(2x+4x\right)\)
\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\left(\cos2x.\cos4x-\sin2x.\sin4x\right)\)
\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\cos2x.\cos4x-2\sin^22x.\sin4x\)
\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+\sin4x.\cos4x-\sin4x+\cos4x.\sin4x\)
Đến đây bn tự giải nốt nhé, lm kiểu bthg thôi bởi vì đã quy về hết sin4x và cos4x r
\(2\left(1-sin^2x\right)+3sinx+3=0\)
\(\Leftrightarrow-2sin^2x+3sinx+5=0\Rightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\frac{5}{2}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow x=-\frac{\pi}{2}+k2\pi\)
\(0\le-\frac{\pi}{2}+k2\pi\le200\pi\Rightarrow1\le k\le100\) (có 100 nghiệm)
Tổng các nghiệm:
\(\sum x=-\frac{\pi}{2}.100+\sum\limits^{100}_{k=1}2k\pi=10050\pi\)
2.
\(\Leftrightarrow2cos^2x-1+3\left|cosx\right|-1=0\)
\(\Leftrightarrow2\left|cosx\right|^2+3\left|cosx\right|-2=0\Rightarrow\left[{}\begin{matrix}\left|cosx\right|=\frac{1}{2}\\\left|cosx\right|=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pm\frac{\pi}{3}+k2\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
Pt có 2 nghiệm trên đoạn đã cho \(x=\pm\frac{\pi}{3}\)
\(cos2x+3sinx-2=0\)
\(\Leftrightarrow1-2sin^2x+3sinx-2=0\)
\(\Leftrightarrow-2sin^2x+3sinx-1=0\Rightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\)
Do \(x\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\Rightarrow\left\{{}\begin{matrix}-1< sinx< 1\\0< cosx\le1\end{matrix}\right.\)
\(\Rightarrow sinx=\frac{1}{2}\) \(\Rightarrow cosx=\sqrt{1-sin^2x}=\frac{\sqrt{3}}{2}\)
\(\Rightarrow M=sin2x.cosx=2sinx.cos^2x=2.\frac{1}{2}.\left(\frac{\sqrt{3}}{2}\right)^2=...\)