K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

- Nếu x = 1010 <=> P = 0

- Nếu x > 1010

Xét \(\dfrac{1}{P}=\dfrac{x+1}{\sqrt{x-1010}}=\dfrac{\left(x-1010\right)+1011}{\sqrt{x-1010}}=\sqrt{x-1010}+\dfrac{1011}{\sqrt{x-1010}}\)

=> \(\dfrac{1}{P}\ge2.\sqrt{\sqrt{x-1010}.\dfrac{1011}{\sqrt{x-1010}}}=2.\sqrt{1011}\)

=> \(P\le\dfrac{\sqrt{1011}}{2022}\)

Dấu "=" xảy ra <=> x = 2021 (Tm)

a) Thay x=4 vào biểu thức \(B=\dfrac{3}{\sqrt{x}-1}\), ta được:

\(B=\dfrac{3}{\sqrt{4}-1}=\dfrac{3}{2-1}=3\)

Vậy: Khi x=4 thì B=3

b) Ta có: P=A-B

\(\Leftrightarrow P=\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{3}{\sqrt{x}-1}\)

\(\Leftrightarrow P=\dfrac{6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{6+x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow P=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

a: \(A=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}=\dfrac{-3\sqrt{x}-9}{x-9}\)

\(=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}-3}\)

b: A=1/3

=>\(\dfrac{-3}{\sqrt{x}-3}=\dfrac{1}{3}\)

=>căn x-3=-9

=>căn x=-6(loại)

c: căn x-3>=-3

=>3/căn x-3<=-1

=>-3/căn x-3>=1

Dấu = xảy ra khi x=0

11 tháng 8 2023

\(-3+6=-3\) =))

1 tháng 5 2023

Ta có :A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\) -\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\) 

=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)-2

=\(\dfrac{-\sqrt{x}}{\sqrt{x}+1}\)

thay vào A=\(\dfrac{-2}{3}\)

b)

A=-1+\(\dfrac{1}{\sqrt{x}+1}\) \(\ge\) -1+\(\dfrac{1}{1}\)=1(vì \(\sqrt{x}\)\(\ge\) 0)

Dấu bằng xẩy ra\(\Leftrightarrow\) x=0

1 tháng 5 2023

chỗ đó cho thêm x-1 nha

đấu >= thay thành <= rùi nhân thêm x-1>=-1 nữa là lớn nhất bằng 0

\(P=\dfrac{\sqrt{x}+1+3}{\sqrt{x}+1}=1+\dfrac{3}{\sqrt{x}+1}\)

P lớn nhất khi căn x+1=1

=>x=0

11 tháng 4 2021

undefined

11 tháng 4 2021

Vì `x>0` nên ta chia 2 vế tử và mẫu cho `sqrtx>0`

`=>sqrx/(x-sqrtx+1)`

`=1/(sqrtx-1+1/sqrtx)`

Áp dụng cosi:

`sqrtx+1/sqrtx>=2`

`=>sqrtx-1+1/sqrtx>=1`

`=>1/(sqrtx-1+1/sqrtx)<=1`

Hay `sqrtx/(x-sqrtx+1)<=1`

Dấu "=" `<=>x=1`

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

1 tháng 1 2021

P đạt giá trị lớn nhất \( \Leftrightarrow (x-\sqrt{x}+1) \) nhỏ nhất.

Mà \(x ≥0 \forall x \Rightarrow (x-\sqrt{x}+1)_{min} \Leftrightarrow x=0 \) 

\( \Rightarrow  P_{min}=\dfrac{1}{0-0+1}=1 \Leftrightarrow x=0\)

Vậy \(P_{min} =1 \Leftrghtarrow x=0\).

18 tháng 7 2021

Để P đạt GTLN

\(\Leftrightarrow x-\sqrt{x}+1\) đạt GTNN

\(\Leftrightarrow\left(\sqrt{x}^2-2\sqrt{x}\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\right)\) đạt GTNN

\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) đạt GTNN

Nhận xét: \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\forall x\inĐK\)

             \(\Rightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\inĐK\) hay \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\inĐK\)

\(\Rightarrow Pmin=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x=\dfrac{1}{4}\)

Vậy P đạt giá trị nhỏ nhất bằng 3/4 khi x=1/4