\(x=\frac{1}{3}\left(1+\sqrt[3]{\frac{12+\sqrt{135}}{3}}+\sqrt[3]{\frac{12-\sqrt{125}}{3}}\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2020

Từ \(x=\frac{1}{3}\left(1+\sqrt[3]{\frac{12+\sqrt{135}}{3}}+\sqrt[3]{\frac{12-\sqrt{135}}{3}}\right)\)

\(\Rightarrow3x-1=\left(\sqrt[3]{\frac{12+\sqrt{135}}{3}}+\sqrt[3]{\frac{12-\sqrt{135}}{3}}\right)\)

\(\Leftrightarrow\left(3x-1\right)^3=\left(\sqrt[3]{\frac{12+\sqrt{135}}{3}}+\sqrt[3]{\frac{12-\sqrt{135}}{3}}\right)^3\)

\(\Rightarrow\left(3x-1\right)^3=8+3\left(3x+1\right)\)

\(\Leftrightarrow9x^3-9x^2-2=0\)

\(\Rightarrow M=-1\)

8 tháng 1 2016

\(M=\left(9x^3-9x^2-3\right)^2\)

Hình như tính cái này 

8 tháng 1 2016

Đặt \(a=\sqrt[3]{\frac{12+\sqrt{135}}{3}}+\sqrt[3]{\frac{12-\sqrt{135}}{3}}\)
\(\Rightarrow a^3=\left(\sqrt[3]{4+\sqrt{15}}+\sqrt[3]{4-\sqrt{15}}\right)^3\)
Có (a+b)^3=a^3+b^3+3ab(a+b)
\(\Rightarrow a^3=4+\sqrt{15}+4-\sqrt{15}+3\sqrt[3]{\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}a\)
\(\Rightarrow a^3=8+3a\Rightarrow a^3-3a-8=0\)-> khó
 

8 tháng 1 2016

http://olm.vn/hoi-dap/question/369649.html

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

k) ĐK: $x^2\geq 5$

PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$

$\Leftrightarrow 2\sqrt{x^2-5}=4$

$\Leftrightarrow \sqrt{x^2-5}=2$

$\Rightarrow x^2-5=4$

$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)

l) ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$

$\Leftrightarrow 4\sqrt{x+1}=4$

$\Leftrightarrow \sqrt{x+1}=1$

$\Rightarrow x+1=1$

$\Rightarrow x=0$

m) 

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$

$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$

$\Leftrightarrow 4\sqrt{x+1}=16$

$\Leftrightarrow \sqrt{x+1}=4$

$\Rightarrow x=15$ (thỏa mãn)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

h) 

ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{x+5}=6$

$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)

i) ĐKXĐ: $x\geq 5$

PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)

\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)

j) 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$

$\Leftrightarrow -2\sqrt{2x}+4=0$

$\Leftrightarrow \sqrt{2x}=2$

$\Rightarrow x=2$ (thỏa mãn)

 

NV
31 tháng 1 2019

Do \(12=\sqrt{144}>\sqrt{135}\) nên \(x>0\)

Đặt \(a=\sqrt[3]{\dfrac{12+\sqrt{135}}{3}}+\sqrt[3]{\dfrac{12-\sqrt{135}}{3}}\) \(\Rightarrow x=\dfrac{1}{3}\left(a+1\right)\)

\(a^3=8+3\left(\sqrt[3]{\dfrac{12+\sqrt{135}}{3}}+\sqrt[3]{\dfrac{12-\sqrt{135}}{3}}\right)=8+3a\)

Ta có: \(x=\dfrac{1}{3}\left(a+1\right)\Rightarrow3x=a+1\Rightarrow9x^2=a^2+2a+1\)

Lại có: \(x^3=\dfrac{1}{27}\left(a+1\right)^3\Leftrightarrow9x^3=\dfrac{1}{3}\left(a^3+3a^2+3a+1\right)\)

\(\Leftrightarrow9x^3=\dfrac{1}{3}\left(8+3a+3a^2+3a+1\right)=a^2+2a+3\)

\(\Rightarrow M=\left(a^2+2a+3-a^2-2a-1-3\right)^2=\left(-1\right)^2=1\)

Bài 1 )

a)\(3\sqrt{\frac{1}{3}}-\frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{3}-\left(\sqrt{3}-\sqrt{2}\right)=\sqrt{2}\)

b)\(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}=\left(\sqrt{3}+1\right)-\left|1-\sqrt{3}\right|=\left(\sqrt{3}+1\right)-\sqrt{3}+1=2\)

Bài 2)

a)\(\sqrt{36x^2-12x+1}=5\)

\(\Leftrightarrow36x^2-12x+1=25\)

\(\Leftrightarrow36x^2-12x+1=25\)

\(\Leftrightarrow\left(6x\right)^2-2.6x+1=25\)

\(\Leftrightarrow\left(6x-1\right)^2=25\)

\(\Rightarrow6x-1=5\)

\(\Leftrightarrow6x=6\)

\(\Rightarrow x=1\)

b)\(\sqrt{x-5}-2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)

\(\Leftrightarrow\sqrt{x-5}-2\sqrt{4.\left(x-5\right)}-\frac{1}{3}\sqrt{9.\left(x-5\right)}=12\)

\(\Leftrightarrow\sqrt{x-5}-4\sqrt{\left(x-5\right)}-\sqrt{\left(x-5\right)}=12\)

\(\Leftrightarrow-4\sqrt{\left(x-5\right)}=12\)

\(\Rightarrow\)ko tồn tại giá trị nào của x trong biểu thức này

P/s tham khảo nha

25 tháng 8 2018

1a) \(3\sqrt{\frac{1}{3}}-\frac{1}{\sqrt{3}+\sqrt{2}}\)

=\(3\sqrt{\frac{3}{3^2}}-\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)

=\(3\frac{\sqrt{3}}{\sqrt{3^2}}-\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}\)

=\(3\frac{\sqrt{3}}{3}-\frac{\sqrt{3}-\sqrt{2}}{3-2}\)

=\(\sqrt{3}-\left(\sqrt{3}-\sqrt{2}\right)\)

=\(\sqrt{3}-\sqrt{3}+\sqrt{2}\)=\(\sqrt{2}\)

b)\(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)

=\(|\sqrt{3}+1|-|1-\sqrt{3}|\)

=\(\sqrt{3}+1-\left(-\left(1-\sqrt{3}\right)\right)\)

=\(\sqrt{3}+1+1-\sqrt{3}\)

=\(1+1\)=\(2\)

2) a) \(\sqrt{36x^2-12x+1}=5\)

<=>\(\sqrt{\left(6x\right)^2-2.6x.1+1^2}=5\)

<=>\(\sqrt{\left(6x-1\right)^2}=5\)

<=>\(|6x-1|=5\)

Nếu \(6x-1>=0\)=> \(6x>=1\)=>\(x>=\frac{1}{6}\)

Nên \(|6x-1|=6x-1\)

Ta có \(|6x-1|=5\)

<=> \(6x-1=5\)

<=> \(6x=6\)

<=> \(x=1\)(thỏa)

Nếu \(6x-1< 0\)=> \(6x< 1\)=>\(x< \frac{1}{6}\)

Nên \(|6x-1|=-\left(6x-1\right)=1-6x\)

Ta có \(|6x-1|=5\)

<=> \(1-6x=5\)

<=> \(-6x=4\)

<=> \(x=\frac{4}{-6}=\frac{-2}{3}\)(thỏa)

Vậy \(x=1\)và \(x=\frac{-2}{3}\)

b) \(\sqrt{x-5}-2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)

<=>\(\sqrt{x-5}-2\sqrt{4\left(x-5\right)}-\frac{1}{3}\sqrt{9\left(x-5\right)}=12\)

<=>\(\sqrt{x-5}-2.2\sqrt{x-5}-\frac{1}{3}.3\sqrt{x-5}=12\)

<=>\(\sqrt{x-5}-4\sqrt{x-5}-\sqrt{x-5}=12\)

<=>\(-4\sqrt{x-5}=12\)

<=> \(\sqrt{x-5}=-3\)

<=> \(\left(\sqrt{x-5}\right)^2=\left(-3\right)^2\)

<=>\(x-5=9\)

<=>\(x=14\)

Vậy x=14

Kết bạn với mình nhá

19 tháng 10 2020

ghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghgh

by

duc

NV
28 tháng 12 2018

Đặt \(a=\sqrt[3]{\dfrac{12+\sqrt{135}}{3}}+\sqrt[3]{\dfrac{12-\sqrt{135}}{3}}\) \(\Rightarrow x=\dfrac{1}{3}\left(a+1\right)\)

\(\Rightarrow3x=a+1\Rightarrow9x^2=a^2+2a+1\) (1)

\(x^3=\dfrac{1}{27}\left(a+1\right)^3=\dfrac{1}{27}\left(a^3+3a^2+3a+1\right)\)

Ta có:

\(a^3=\left(\sqrt[3]{\dfrac{12+\sqrt{135}}{3}}+\sqrt[3]{\dfrac{12-\sqrt{135}}{3}}\right)^3\)

\(\Rightarrow a^3=\dfrac{24}{3}+3\sqrt[3]{\dfrac{\left(12+\sqrt{135}\right)\left(12-\sqrt{135}\right)}{9}}.\left(\sqrt[3]{\dfrac{12+\sqrt{135}}{3}}+\sqrt[3]{\dfrac{12-\sqrt{135}}{3}}\right)\)

\(\Rightarrow a^3=8+3a\)

\(\Rightarrow x^3=\dfrac{1}{27}\left(8+3a+3a^2+3a+1\right)=\dfrac{1}{9}\left(a^2+2a+3\right)\)

\(\Rightarrow9x^3=a^2+2a+3\) (2)

Thay (1), (2) vào M ta được:

\(M=\left(9x^3-9x^2-3\right)^2=\left(a^2+2a+3-\left(a^2+2a+1\right)-3\right)^2\)

\(\Rightarrow M=\left(-1\right)^2=1\)