K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAMD và ΔCMB có

\(\widehat{DAM}=\widehat{BCM}\)

MA=MC

\(\widehat{DMA}=\widehat{BMC}\)

Do đó: ΔAMD=ΔCMB

b: Ta có: ΔAMD=ΔCMB

nên MD=MB

hay M là trung điểm của BD

Xét tứ giác ABCD có

M là trung điểm của AC
M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AB=DC

26 tháng 12 2017

Xét tam giác ΔAHO và ΔBHO, ta có :

+ \(\widehat{O}\) là góc chung(giả thuyết)

+AH=AB(vì Ot là tia phân giác của góc xOy)

+\(\widehat{AHO}\)=\(\widehat{BHO}\)(giả thuyết)

➩ΔAHO = ΔBHO (c.g.c)(nghĩa là góc.cạnh.góc)

⚠⚠⚠Lưu ý: trường hợp này là góc.cạnh.góc (hoặc là c.g.c) nên theo yêu cầu cần 2 góc và 1 cạnh ; phải đặt đúng theo thứ tự :

Góc đầu tiên;rồi đến cạnh và cuối là góc còn lại

27 tháng 12 2017

ban lam thieu

a: \(\widehat{HAB}=90^0-60^0=30^0\)

b: Xét ΔAHI và ΔADI có

AH=AD

HI=DI

AI chung

Do đó: ΔAHI=ΔADI

Ta có: ΔAHD cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

c: Xét ΔAHK và ΔADK có

AH=AD

\(\widehat{HAK}=\widehat{DAK}\)

AK chung

Do đó: ΔAHK=ΔADK

Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)

=>DK//AB

Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ

                                                                                   góc ACB+ACE=180 độ

=> góc ABD=góc  ACE

Xét tam giác ABD và tam giác ACE có 

AB=AC (tam giác ABC cân tại A)

góc ABD=góc ACE (cmt)

BD=CE(gt)

=> tam giác ABD=tam giác ACE(c-g-c)

=> AD=AE(cạnh tương ứng)

Vậy tam giác ADE cân và cân tại A

b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E

Xét tam giác AMD và tam giác AME có:

AD=AE(tam giác ADE cân tại A)

góc D=góc E(cmt)

góc AMD=góc AME=90 độ

=> tam giác AMD=tam giác AME(ch-gn)

=> góc DAM=góc EAM(góc tương ứng)

Vậy AM là tia phân giác góc DAE

 

d: Ta có: \(\widehat{KBC}=\widehat{MBD}\)

\(\widehat{KCB}=\widehat{NCE}\)

mà \(\widehat{MBD}=\widehat{NCE}\)

nên \(\widehat{KBC}=\widehat{KCB}\)

hay ΔKBC cân tại K

=>KB=KC

Ta có: KB+BM=KM

KC+CN=KN

mà KB=KC

và BM=CN

nên KM=KN

=>ΔKNM cân tại K

a: Xét ΔOAM và ΔOBM có

OA=OB

\(\widehat{AOM}=\widehat{BOM}\)

OM chung

Do đó: ΔOAM=ΔOBM

b: Xét ΔOAC và ΔOBD có

\(\widehat{AOC}\) chung

OA=OB

\(\widehat{OAC}=\widehat{OBD}\)

Do đó; ΔOAC=ΔOBD

Suy ra: AC=BD