K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

\(\frac{x}{8}\)\(=\frac{y}{5}\)\(=\frac{z}{12}\)\(=\frac{-x+y-z}{-8+5-12}\)\(=\frac{60}{-15}\)\(=-4\)

\(\Rightarrow x=-4\times8=-32\)

\(\Rightarrow y=5\times\left(-4\right)=-20\)

\(\Rightarrow z=12\times\left(-4\right)=-48\)

XIN TiiCK

18 tháng 10 2018

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{5}=\frac{z}{12}=\frac{-x+y-z}{-8+5-12}=\frac{60}{-15}=-4\)

\(\frac{x}{8}=-4=>x=-32\)

\(\frac{y}{5}=-4=>y=-20\)

\(\frac{z}{12}=-4=>z=-48\)

Vậy ....(tự kết luận) 

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{8}=\frac{y}{5}=\frac{z}{12}=\frac{-x+y-z}{-8+5-12}=-4\)

\(\frac{x}{8}=-4\Rightarrow x=-32\)

\(\frac{y}{5}=-4\Rightarrow y=-20\)

\(\frac{z}{12}=-4\Rightarrow z=-48\)

Vậy\(x=-32;y=-20;z=-48\)

#Học tốt!

15 tháng 3 2023

a) Ta có hệ phương trình:

x/8 = y/12
x + y = 60 Giải bằng cách thay x/8 bằng y/12 trong phương trình thứ hai, ta có:
(y/12)*8 + y = 60
2y + y = 60
y = 20 Thay y = 20 vào x + y = 60, ta có x = 40. Vậy kết quả là x = 40, y = 20.
b) Ta có hệ phương trình:

x/3 = y/6
x*y = 162 Thay x/3 bằng y/6 trong phương trình thứ hai, ta có:
y^2 = 324
y = 18 Thay y = 18 vào x/3 = y/6, ta có x = 9. Vậy kết quả là x = 9, y = 18.
c) Ta có hệ phương trình:

x/y = 2/5
xy = 40 Từ phương trình thứ nhất, ta có x = 2y/5. Thay vào xy = 40, ta có:
(2y/5)*y = 40
y^2 = 100
y = 10 Thay y = 10 vào x = 2y/5, ta có x = 4. Vậy kết quả là x = 4, y = 10.
d) Ta có hệ phương trình:

x/7 = y/6
y/8 = z/5
x + y - z = 37 Thay x/7 bằng y/6 trong phương trình thứ ba, ta có x = (7/6)*y - z. Thay y/8 bằng z/5 trong phương trình thứ ba, ta có y = (8/5)*z. Thay x và y vào phương trình thứ ba, ta được:
(7/6)*y - z + y - z = 37
(19/6)*y - 2z = 37 Thay y = (8/5)*z vào phương trình trên, ta có:
(19/6)*(8/5)*z - 2z = 37
z = 30 Thay z = 30 vào y = (8/5)*z, ta có y = 48. Thay y và z vào x/7 = y/6, ta có x = 35. Vậy kết quả là x = 35, y = 48, z = 30.
e) Ta có hệ phương trình:

10x = 15y = 21z
3x - 5z + 7y = 37 Từ phương trình thứ nhất, ta có:
x = 3z/7
y = 3z/5 Thay x và y vào phương trình thứ hai, ta có:
3z/73 - 5z + 73z/5 = 37
3z - 5z + 12z - 245 = 0
10z = 245
z = 24.5 Thay z = 24.5 vào x = 3z/7 và y = 3z/5, ta có x = 10.5 và y = 14.7. Tuy nhiên, kết quả này không phải là một cặp số nguyên. Vậy hệ phương trình không có nghiệm thỏa mãn.

26 tháng 7 2018

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

  \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y+z}{3+5+6}=\frac{48}{14}=\frac{24}{7}\)

suy ra:  \(\frac{x}{3}=\frac{24}{7}\)=>   \(x=\frac{72}{7}\)

             \(\frac{y}{5}=\frac{24}{7}\) =>   \(y=\frac{120}{7}\)

             \(\frac{z}{6}=\frac{24}{7}\) =>  \(z=\frac{144}{7}\)

Vậy...

b) c)  bạn làm tương tự

d) Đặt:    \(\frac{x}{3}=\frac{y}{5}=k\)  =>    \(x=3k;\)  \(y=5k\)

Ta có:  \(x.y=60\)

<=>  \(3k.5k=60\)

<=>  \(k^2=4\)

<=>  \(k=\pm2\)

  • k = 2  thì:  x = 6;   y = 10
  • k = - 2  thì:  x = -6;   y = -10
10 tháng 12 2017

ai đó trả lời giúp tui đi mà

12 tháng 2 2020

a) \(\frac{x}{2}=\frac{y}{5}\) và x + y = -14

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-14}{7}=-2\)

=> \(\orbr{\begin{cases}\frac{x}{2}=-2\\\frac{y}{5}=-2\end{cases}}\)=> \(\orbr{\begin{cases}x=-4\\y=-10\end{cases}}\)

b) \(\frac{x}{7}=\frac{y}{5}\) và x - y = 8

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{x-y}{7-5}=\frac{8}{2}=4\)

=> \(\orbr{\begin{cases}\frac{x}{7}=4\\\frac{y}{5}=4\end{cases}}\)=> \(\orbr{\begin{cases}x=28\\y=20\end{cases}}\)

c) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\) và x + y + z = 56

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{x+y+z}{2+5+7}=\frac{56}{14}=4\)

=> \(\hept{\begin{cases}\frac{x}{2}=4\\\frac{y}{5}=4\\\frac{z}{7}=4\end{cases}}\)=> \(\hept{\begin{cases}x=8\\y=20\\z=28\end{cases}}\)

d) \(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\) và x + y + z = 12

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{3+5+8}=\frac{12}{16}=\frac{3}{4}\)

=> \(\hept{\begin{cases}\frac{x}{3}=\frac{3}{4}\\\frac{y}{5}=\frac{3}{4}\\\frac{z}{8}=\frac{3}{4}\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{15}{4}\\z=6\end{cases}}\)

16 tháng 10 2021

\(a,\dfrac{12}{5}=\dfrac{x}{1,5}\Rightarrow x=\dfrac{12\cdot1,5}{5}=3,6\\ b,\dfrac{x}{5}=\dfrac{3}{20}\Rightarrow x=\dfrac{5\cdot3}{20}=\dfrac{3}{4}\\ c,\dfrac{4}{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{4\cdot9}{10}=\dfrac{18}{5}\\ d,\Rightarrow\dfrac{x}{15}=\dfrac{60}{x}\Rightarrow x^2=60\cdot15=900\Rightarrow\left[{}\begin{matrix}x=30\\x=-30\end{matrix}\right.\\ 2,\)

a, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{8}{2}=4\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=20\\z=24\end{matrix}\right.\)

b, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x-y+z}{3-5+6}=\dfrac{-4}{4}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-6\end{matrix}\right.\)

c, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{2y}{10}=\dfrac{3z}{18}=\dfrac{x-2y+3z}{3-10+18}=\dfrac{-33}{11}=-3\\ \Rightarrow\left\{{}\begin{matrix}x=-9\\y=-15\\z=-18\end{matrix}\right.\)

d, Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=k\Rightarrow x=3k;y=5k;z=6k\)

\(x^2-4y^2+2z^2=-475\\ \Rightarrow9k^2-100k^2+72z^2=-475\\ \Rightarrow-19k^2=-475\\ \Rightarrow k^2=25\Rightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=15;y=25;z=30\\x=-15;y=-25;z=-30\end{matrix}\right.\)

20 tháng 10 2021

Bài 2: 

Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)

Ta có: xy=12

\(\Leftrightarrow12k^2=12\)

\(\Leftrightarrow k^2=1\)

Trường hợp 1: k=1

\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=3\\y=4k=4\end{matrix}\right.\)

Trường hợp 2: k=-1

\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=-3\\y=4k=-4\end{matrix}\right.\)