
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Lời giải:
a) $(x^2+1)(x-1)=0\Rightarrow x^2+1=0$ hoặc $x-1=0$
$\Rightarrow x^2=-1$ hoặc $x=1$. Dễ thấy TH $x^2=-1< 0$ vô lý nên $x=1$
Thay vào biểu thức $E$ thì:
$E=3+8-1=10$
b) $x-5=0$ nên:
$G=x^{2020}(x-5)+2=x^{2020}.0+2=2$

Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)

x=2020 nên x+1=2021
\(P\left(x\right)=x^{2021}-x^{2020}\left(x+1\right)+x^{2019}\left(x+1\right)-....+x\left(x+1\right)-2020\)
\(=x^{2021}-x^{2021}-x^{2020}+x^{2020}-...+x^2+x-2020\)
=x-2020=0

Link bài làm của mình đây nhé
https://olm.vn/hoi-dap/detail/831153598726.html

\(\left(7y-x\right)^{2020}\ge0,\left|5-11x\right|^{2021}\ge0\)
Mà \(\left(7y-x\right)^{2020}+\left|5-11x\right|^{2021}=0\\ \Rightarrow\left\{{}\begin{matrix}\left(7y-x\right)^{2020}=0\\\left|5-11x\right|^{2021}=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7y-x=0\\5-11x=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7y-\dfrac{5}{11}=0\\x=\dfrac{5}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{77}\\x=\dfrac{5}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(7y-x\right)^{2020}=0\\\left|5-11x\right|^{2021}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y-x=0\\5-11x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=x\\x=\dfrac{5}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{11}\\y=\dfrac{5}{77}\end{matrix}\right.\)

=x^2020(x+5)+100
=100