K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2016

 vì x+4y=1 nên x=1-4y (1) 

ta có : x^2+4y^2≥1/5 
=> x^2+4y^2-1/5 ≥0 (2) 
thay (1) vào (2) ta có:(1-4y)^2+4y^2-1/5 ≥ 0 
<=>1-8y +16y^2 + 4y^2 - 1/5 ≥ 0 
<=>20y^2 - 8y + 4/5 ≥ 0 
<=>5(4y^2 - 8/5y + 4/25) ≥ 0 
<=>5(2y-8/20)^2 ≥ 0 (luôn đúng) 
Vậy với x+4y=1 thì x^2+4y^2≥1/5 ;dấu = xảy ra khi x=y=1/5

11 tháng 4 2016

Làm gọn thôi bạn ơi! Dùng bất đẳng thức Bunyakovsky

5 tháng 4 2018

2/ Áp dụng BĐT Bunhiacopxki \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)

\(\Leftrightarrow a^2x^2+b^2y^2+2abxy\le a^2x^2+a^2y^2+b^2x^2+b^2y^2\)

\(\Leftrightarrow bx^2+ay^2-2abxy\ge0\)

\(\Leftrightarrow\left(bx-ay\right)^2\ge0\)(đúng)  Dấu "=" xảy ra khi x/a=y/b

Ta có: \(\left(x+4y\right)^2\le\left(1^2+2^2\right)\left(x^2+4y^2\right)=5\left(x^2+4y^2\right)\)

Mà a + 4b = 1

\(\Rightarrow x^2+4y^2\ge\frac{1}{5}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{1}{x}=\frac{2}{2y}=\frac{1}{y}\\x+4y=1\end{cases}}\Rightarrow x=y=\frac{1}{5}\)

20 tháng 4 2017

Vì x+4y=1 nên  \(x^2+4y^2\ge1\)với mọi x , y  

Mà     1 > \(\frac{1}{5}\)

        \(\Rightarrow\)\(x^2+4y^2>\frac{1}{5}\)vơi mọi x,y 

16 tháng 4 2016

đề này hơi bị hư cấu á bạn !!

16 tháng 4 2016

 vì x+4y=1 nên x=1-4y (1) 
ta có : x^2+4y^2≥1/5 
=> x^2+4y^2-1/5 ≥0 (2) 
thay (1) vào (2) ta có:(1-4y)^2+4y^2-1/5 ≥ 0 
<=>1-8y +16y^2 + 4y^2 - 1/5 ≥ 0 
<=>20y^2 - 8y + 4/5 ≥ 0 
<=>5(4y^2 - 8/5y + 4/25) ≥ 0 
<=>5(2y-8/20)^2 ≥ 0 (luôn đúng) 
Vậy với x+4y=1 thì x^2+4y^2≥1/5 ;dấu = xảy ra khi x=y=1/5

27 tháng 9 2018

\(1)\)

\(a)\)\(A=5-8x-x^2\)

\(A=-\left(x^2+8x+16\right)+21\)

\(A=-\left(x+4\right)^2+21\le21\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-\left(x+4\right)^2=0\)

\(\Leftrightarrow\)\(x=-4\)

Vậy GTLN của \(A\) là \(21\) khi \(x=-4\)

\(b)\)\(B=5-x^2+2x-4y^2-4y\)

\(-B=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)-7\)

\(-B=\left(x-1\right)^2+\left(2y+1\right)^2-7\ge-7\)

\(B=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x-1\right)^2=0\\-\left(2y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)

Vậy GTLN của \(B\) là \(7\) khi \(x=1\) và \(y=\frac{-1}{2}\)

Chúc bạn học tốt ~ 

27 tháng 9 2018

\(2)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(............\)

\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(2A=3^{128}-1\)

\(A=\frac{2^{128}-1}{3}\)

Chúc bạn học tốt ~ 

16 tháng 10 2016

Rút gọn

\(\left(2x+1\right)\left(4x^2-3x+1\right)+\left(2x-1\right)\left(4x^2+3x+1\right)\)

\(=8x^3-12x^2+2x+4x^2-3x+1+8x^3+12x^2+2x-4x^2-3x-1\)

\(=16x^3-2x\)

Phân tích đa thức thnahf nhân tử

\(4y^2+16y-x^2-8x\)

\(=\left(4y^2-x^2\right)+\left(16y-8x\right)\)

\(=\left(2y-x\right)\left(2y+x\right)+8\left(2y-x\right)\)

\(=\left(2y-x\right)\left(2y+x+8\right)\)

Chứng minh .............

Có: \(x^2+x+1=\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì: \(\left(x+\frac{1}{2}\right)^2\ge0\)

=> \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Kết luận......

 

10 tháng 9 2018

a) Ta có:

\(A=x^2+2xy+y^2-4x-4y+1\)

\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)

Thay x + y = 3 vào A

\(A=3^2-4.3+1\)

\(A=9-12+1\)

\(A=-2\)

b) Sửa đề:

\(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(B=x^2+2x+y^2-2y-2xy+37\)

\(B=\left(x^2+y^2+1+2x-2y-2xy\right)+36\)

\(B=\left(x-y+1\right)^2+36\)

Thay x - y = 7 vào B

\(B=\left(7+1\right)^2+36\)

\(B=100\)

c) Ta có:

\(C=x^2+4y^2-2x+10+4xy-4y\)

\(C=\left(x^2+4xy+4y^2\right)-\left(2x+4y\right)+10\)

\(C=\left(x+2y\right)^2-2\left(x+2y\right)+10\)

Thay x + 2y = 5 vào C

\(C=5^2-2.5+10\)

\(C=25-10+10\)

\(C=25\)