Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{x}{y}=\frac{4}{7}\Rightarrow\frac{x}{4}=\frac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{x}{4}=\frac{y}{7}=\frac{x-y}{4-7}=\frac{24}{-3}=-8\)
Khi đó :
\(\frac{x}{4}=-8\Rightarrow x=-8.4=-32\)
\(\frac{y}{7}=-8\Rightarrow y=-8.7=-56\)
Đặt \(\frac{x}{4}=\frac{y}{7}=k\left(k\ne0\right)\)
\(\Rightarrow x=4k\); \(y=7k\)
mà \(xy=112\)
\(\Rightarrow4k.7k=28k^2=112\)
\(\Rightarrow k^2=4\)\(\Rightarrow k=\pm2\)
TH1: Nếu \(k=-2\)
\(\Rightarrow x=\left(-2\right).4=-8\); \(y=\left(-2\right).7=-14\)
TH2: Nếu \(k=2\)
\(\Rightarrow x=2.4=8\); \(y=2.7=14\)
Vậy các cặp giá trị \(\left(x;y\right)\)thỏa mãn đề bài là \(\left(-8;-14\right)\), \(\left(8;14\right)\)
Đặt \(\frac{x}{4}=\frac{y}{7}=k\)
\(\Rightarrow\hept{\begin{cases}x=4k\\y=7k\end{cases}}\)
Thay vào \(x.y=112\)ta có:
\(x.y=112\)
\(\Rightarrow\)\(4k.7k=112\)
\(\Rightarrow\)\(\left(4.7\right).\left(k.k\right)\)\(=112\)
\(\Rightarrow\)\(28.k^2=112\)
\(\Rightarrow\)\(k^2=4\)
\(\Rightarrow\)\(k^2=\left(\pm2\right)^2\)
\(\Rightarrow\)\(k^2=\pm2\)
+, Với \(k=2\)ta có:
\(\hept{\begin{cases}x=2.4=8\\y=2.7=14\end{cases}}\)
+, Với \(k=-2\)ta có:
\(\hept{\begin{cases}x=\left(-2\right).4=-8\\y=\left(-2\right).7=-14\end{cases}}\)
Vậy \(\hept{\begin{cases}x=8\\y=14\end{cases}}\); \(\hept{\begin{cases}x=-8\\y=-14\end{cases}}\)
Vì \(x:y=4:7\Rightarrow\frac{x}{4}=\frac{y}{7}\)
Áp dụng t/c dãy tỉ số "=" nhau :
\(\Rightarrow\frac{x}{4}=\frac{y}{7}=\frac{x-y}{4-7}=\frac{24}{-3}=-8\)
\(\Rightarrow x=-32;y=-56\)
Ta có :
\(x:y=\frac{4}{7}\)\(\Rightarrow\)\(\frac{x}{y}=\frac{4}{7}\)\(\Rightarrow\)\(\frac{x}{4}=\frac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{7}=\frac{x-y}{4-7}=\frac{24}{-3}=-8\)
+) \(\frac{x}{4}=-8\)\(\Rightarrow\)\(x=-32\)
+) \(\frac{y}{7}=-8\)\(\Rightarrow\)\(y=-56\)
Vậy x = -32 và y = -56
_Chúc bạn học tốt_
a, \(\frac{x}{5}=\frac{y}{6};\frac{y}{8}=\frac{z}{7};x+y-7=60\)
\(\Rightarrow\frac{x}{5.8}=\frac{y}{6.8};\frac{y}{8.6}=\frac{z}{7.6};x+y=67\)
\(\Rightarrow\frac{x}{40}=\frac{y}{48};\frac{y}{48}=\frac{z}{42};x+y=67\)
\(\Rightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{42};x+y=67\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{40}=\frac{y}{48}=\frac{x+y}{40+48}=\frac{67}{88}\)
Tính nốt nha
\(\frac{x}{4}=\frac{y}{7}=k\)
\(\Rightarrow\hept{\begin{cases}x=4k\\y=7k\end{cases}}\)
xy = 112
=> 4k . 7k = 112
=> 28 . k2 = 112
=> k2 = 4 \(\Rightarrow\hept{\begin{cases}k=4\\k=-4\end{cases}}\)
=> \(\hept{\begin{cases}k=4\Rightarrow\hept{\begin{cases}x=16\\y=28\end{cases}}\\k=-4\Rightarrow\hept{\begin{cases}x=-16\\y=-28\end{cases}}\end{cases}}\)
Theo đầu bài ta có:
\(\frac{x}{4}=\frac{y}{7}\)
\(\Rightarrow\left(\frac{x}{4}\right)^2=\frac{x}{4}\cdot\frac{y}{7}=\frac{112}{28}=4\)
\(\Rightarrow\frac{x}{4}=\frac{y}{7}=\sqrt{4}=2\)
\(\Rightarrow x=2\cdot4=8\)
\(\Rightarrow y=2\cdot7=14\)
Đặt x/4 = y/7 = t => x = 4t ; y = 7t
Thay vào xy ta đc
4t.7t = 112
28 t^2 = 112
t^2 = 4
=> t = 2 hoặc t = -2
(+) t = 2 => x =2.4 = 8 ; y = 7.2 = 14
(+) t = - 2 => x = -8 ; y = -14
x/4 = y/7 <=> 7x = 4y <=> 7x - 4y = 0 (1)
vì xy = 112 => y = 112/x (2)
từ (1) và (2) ta được:
7x - 4(112/x) = 0
<=> 7x^2 - 448 = 0 <=> x^2 = 448/7 = 64 <=> x = + - 8
\(\frac{x}{4}=\frac{y}{7}\) và xy=112
Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow x=4k;y=7k\)
Có: xy=112 <=> 4k.7k=112
<=> 28k^2=112
<=>k^2=4
<=> k=2;k=-2
Với k=2 thì x=8 ;y=14
Với k=-2 thì x=-4 ; y=-14
Ta có : \(\begin{cases}\frac{x}{4}=\frac{y}{7}\\xy=112\end{cases}\)
Đặt : \(\frac{x}{4}=\frac{y}{7}=k\)
\(\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\)
Mà : \(x.y=112\) hay \(4k.7k=112\)
\(\Leftrightarrow28k^2=112\)
\(\Leftrightarrow k^2=4\)
\(\Leftrightarrow\begin{cases}k=2\\k=-2\end{cases}\)
Với \(k=2\Rightarrow x=8;y=14\)
Với \(k=-2\Rightarrow x=-8;y=-14\)