K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

\(A=x^2-6x+11\)

\(A=\left(x^2-6x+9\right)+2\)

\(A=\left(x-3\right)^2+2\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-3\right)^2=0\)

\(\Leftrightarrow\)\(x-3=0\)

\(\Leftrightarrow\)\(x=3\)

Vậy GTNN của \(A\) là \(2\) khi \(x=3\)

\(B=x^2-20x+101\)

\(B=\left(x^2-20x+100\right)+1\)

\(B=\left(x-10\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-10\right)^2=0\)

\(\Leftrightarrow\)\(x-10=0\)

\(\Leftrightarrow\)\(x=10\)

Vậy GTNN của \(B\) là \(1\) khi \(x=10\)

Chúc bạn học tốt ~ 

30 tháng 6 2018

\(A=x^2-6x+11\)

\(A=\left(x^2-6x+9\right)+2\)

\(A=\left(x-3\right)^2+2\)

Mà  \(\left(x-3\right)^2\ge0\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi :  \(x-3=0\Leftrightarrow x=3\)

Vậy  \(A_{Min}=2\Leftrightarrow x=3\)

b) \(B=x^2-20x+101\)

\(B=\left(x^2-20x+100\right)+1\)

\(B=\left(x-10\right)^2+1\)

Mà  \(\left(x-10\right)^2\ge0\)

\(\Rightarrow B\ge1\)

Dấu "=" xảy ra khi :  \(x-10=0\Leftrightarrow x=10\)

Vậy  \(B_{Min}=1\Leftrightarrow x=10\)

c)  \(C=x^2-4xy+5y^2+10x-22y+28\)

\(C=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)

\(C=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\)\(\left(y^2-2y+1\right)+2\)

\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

Mà  \(\left(x-2y+5\right)^2\ge0\)

      \(\left(y-1\right)^2\ge0\)

\(\Rightarrow C\ge2\)

Dấu "=" xảy ra khi : 

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vây  \(C_{Min}=2\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)

1 tháng 8 2018

3)

e)

b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

1 tháng 8 2018

3)

b)-x^2+4x-5=-(x^2-4x+5)

=-(x^2-2.2x+2^2)-1

=-(x+2)^2-1

vì -(x+2) nhỏ hơn hoặc bằng 0 \(\forall x\)

=>-(x+2)^2-1<1 \(\forall\)x

10 tháng 7 2016

a) ( -5x+3xy + 7) + ( -6x2y + 4xy2 - 5)=4*x*y^2-6*x^2*y+3*a*x*y-5*a*x^2+7*a-5

b) ( 2,4x3 - 10x2y) + (7x2y - 2,4x3 + 3xy2)=3*x*y^2-3*x^2*y

c) ( 15x2y - 7xy2 - 6y2) + (2x- 12x2y + 7xy2)=-6*y^2+3*x^2*y+2*x^2

d) ( 4x2 + x2y - 5y3) + (5/3 x3 - 6xy2 - x2y) + (x3/3 + 10y3) + ( 6y3-15xy2 - 4x2y - 10x3)=11*y^3-21*x*y^2-4*x^2*y-8*x^3+4*x^2

            

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

30 tháng 10 2017

bài 3:

b) \(x^2-2x+5+y^2-4y=0\)

\(\Leftrightarrow x^2-2x+1+y^2-4y+4=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy x=1; y=2

c) \(x^2+4y^2+13-6x-8y=0\)

\(\Leftrightarrow x^2-6x+9+4y^2-8y+4=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(2y-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2y-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\2y=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Vây x=3; y=1

30 tháng 10 2017

Bài 3:

a) \(x\left(x+4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow x^2+4x-5x+20=0\)

\(\Leftrightarrow x^2-x+20=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+20=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{79}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{-79}{4}\)

\(\Rightarrow\) ptvn

2.

A = xy + 2yz + 3xz = xy + xz + 2yz + 2xz = x(y + z) + 2z(y + z)

Áp dụng BĐT: (a+b)^2/4 ≥ ab dấu = khi a = b
Ta có:
(x + y + z)^2/4 ≥ x(y + z)
(x+ y +z)^2/4 ≥ z(y + z)
=> A ≤ 3(x + y + z)^2/4 = 3.36/4 = 27
=> A max = 27 xảy ra khi:
{x = y + z
{z = y + z
<=> y = 0 và x = z = 3

22 tháng 10 2020

a) x2 - 6x + 11 = ( x2 - 6x + 9 ) + 2 = ( x - 3 )2 + 2 ≥ 2 ∀ x

Dấu "=" xảy ra khi x = 3

=> GTNN của bthuc = 2 <=> x = 3

b) x2 - 20x + 101 = ( x2 - 20x + 100 ) + 1 = ( x - 10 )2 + 1 ≥ 1 ∀ x

Dấu "=" xảy ra khi x = 10

=> GTNN của bthuc = 1 <=> x = 10

c) x2 - 4xy + 5y2 + 10x - 22y + 28

= ( x2 - 4xy + 4y2 + 10x - 20y + 25 ) + ( y2 - 2y + 1 ) + 2

= [ ( x2 - 4xy + 4y2 ) + ( 10x - 20y ) + 25 ] + ( y - 1 )2 + 2

= [ ( x - 2y )2 + 2( x - 2y ).5 + 52 ] + ( y - 1 )2 + 2

= ( x - 2y + 5 )2 + ( y - 1 )2 + 2 ≥ 2 ∀ x, y

Dấu "=" xảy ra khi x = -3 ; y = 1

=> GTNN của bthuc = 2 <=> x = -3 ; y = 1

22 tháng 10 2020

a) \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\)

ta có: \(\left(x-3\right)^2\ge0\forall x\)=> \(\left(x-3\right)^2+2\ge2\)

dấu "=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)

Vậy biểu thức đạt GTNN là 2 khi chỉ khi x = 3