K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

cosi liên hoàn chưởng :3 

17 tháng 9 2019

Dùng BĐT Bunhiacopxki liên tếp 2 lần

6 tháng 2 2020

 Đoạn cuối của cô Nguyễn Linh Chi em có 1 cách biến đổi tương đương cũng khá ngắn gọn ạ

\(RHS\ge2\cdot\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

Theo đánh giá của cô Nguyễn Linh Chi thì \(xy+yz+zx\ge x+y+z\ge3\)

Ta cần chứng minh:\(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\ge\frac{1}{2}\)

Thật vậy,BĐT tương đương với:

\(2\left(x+y+z\right)^2\ge x^2+y^2+z^2-x-y-z+18\)

\(\Leftrightarrow\left(x+y+z\right)^2+x+y+z-12\ge0\)

\(\Leftrightarrow\left(x+y+z+4\right)\left(x+y+z-3\right)\ge0\) ( luôn đúng với \(x+y+z\ge3\) )

=> đpcm

6 tháng 2 2020

Áp dụng: \(AB\le\frac{\left(A+B\right)^2}{4}\)với mọi A, B

Ta có:

\(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\le\frac{\left(x+2+x^2-2x+4\right)^2}{4}\)

=> \(\sqrt{x^3+8}\le\frac{x^2-x+6}{2}\)

=> \(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)

Tương tự 

=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\)

\(\ge\frac{2x^2}{x^2-x+6}+\frac{2y^2}{y^2-y+6}+\frac{2z^2}{z^2-z+6}\)

\(=2\left(\frac{x^2}{x^2-x+6}+\frac{y^2}{y^2-y+6}+\frac{z^2}{z^2-z+6}\right)\)

\(\ge2\frac{\left(x+y+z\right)^2}{x^2-x+6+y^2-y+6+z^2-z+6}\)

\(=2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)(1)

Ta có: \(x+y+z\le xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) với mọi x, y, z 

=> \(\left(x+y+z\right)^2-3\left(x+y+z\right)\ge0\)

=> \(\left(x+y+z\right)\left(x+y+z-3\right)\ge0\)

=> \(x+y+z\ge3\)với mọi x, y, z dương

Và \(x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le\left(x+y+z\right)^2-2\left(x+y+z\right)\)

Do đó: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\)

Đặt: x + y + z = t ( t\(\ge3\))

Xét hiệu: \(\frac{t^2}{t^2-3t+18}-\frac{1}{2}=\frac{t^2+3t-18}{t^2-3t+18}=\frac{\left(t-3\right)\left(t+6\right)}{\left(t-\frac{3}{2}\right)^2+\frac{63}{4}}\ge0\)với mọi t \(\ge3\)

Do đó: \(\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\ge\frac{1}{2}\)(2)

Từ (1); (2) 

=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\ge2.\frac{1}{2}=1\)

Dấu "=" xảy ra <=> x= y = z = 1

13 tháng 12 2018

Ta có:

\(x-3y-2+\sqrt{y\left(x-y-1\right)+x}=0\Leftrightarrow\left(x-y\right)-2\left(y+1\right)+\sqrt{\left(x-y\right)\left(y+1\right)}=0\)

Xét y=-1 thay vào tìm x

Xét y khác -1

\(pt\Leftrightarrow\frac{x-y}{y+1}-2+\sqrt{\frac{x-y}{y+1}}=0\) (2)

Đặt \(\sqrt{\frac{x-y}{y+1}}=a\left(a\ge0\right)\)

pt(2) trở thành

\(a^2+a-2=0\Leftrightarrow\left(a-1\right)\left(a+2\right)=0\)

Làm r nhưng mà làm lại hjhjhj 

7 tháng 7 2020

\(\hept{\begin{cases}x-3y-2+\sqrt{y\left(x-y-1\right)+x}=0\left(1\right)\\3\sqrt{8-x}-\frac{4y}{\sqrt{y+1}+1}=x^2-14y-8\left(2\right)\end{cases}}\)

\(ĐK:\hept{\begin{cases}y\left(x-y-1\right)+x\ge0\\x\le8\\y\ge-1\end{cases}}\)

\(\left(1\right)\Leftrightarrow\sqrt{y\left(x-y-1\right)+x}=-\left(x-3y-2\right)\)\(\Leftrightarrow\sqrt{xy-y^2-y+x}=-\left(x-3y-2\right)\)

\(\Leftrightarrow-\sqrt{\left(x-y\right)\left(y+1\right)}=x-3y-2\)\(\Leftrightarrow-\sqrt{\left(x-y\right)\left(y+1\right)}=\left(x-y\right)-2\left(y+1\right)\)

\(\Leftrightarrow\left(x-y\right)-2\left(y+1\right)+\sqrt{\left(x-y\right)\left(y+1\right)}=0\)(*)

* Với y = -1 thì từ (*) suy ra x = -1

Thay nghiệm \(\left(x,y\right)=\left(-1,-1\right)\)vào (2) thì ta thấy không đúng

* Với \(y\ne-1\)thì chia hai vế của phương trình (*) cho y + 1, ta được: \(\left(\frac{x-y}{y+1}\right)-2+\sqrt{\frac{x-y}{y+1}}=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{\frac{x-y}{y+1}}=1\left(tm\right)\\\sqrt{\frac{x-y}{y+1}}=-2\left(ktm\right)\end{cases}}\Leftrightarrow x-y=y+1\Leftrightarrow y=\frac{x-1}{2}\)

Khi đó \(\left(2\right)\Leftrightarrow3\sqrt{8-x}-\frac{4.\frac{x-1}{2}}{\sqrt{\frac{x-1}{2}+1}+1}=x^2-14.\frac{x-1}{2}-8\)

\(\Leftrightarrow3\sqrt{8-x}-\frac{2\left(x-1\right)}{\sqrt{\frac{x-1}{2}+1}+1}-x^2+7x+1=0\)

Đặt \(f\left(x\right)=3\sqrt{8-x}-\frac{2\left(x-1\right)}{\sqrt{\frac{x-1}{2}+1}+1}-x^2+7x+1\)

Ta có: \(f\left(-1\right)=6;f\left(8\right)=-3-6\sqrt{2}\Rightarrow f\left(-1\right).f\left(8\right)=-18-36\sqrt{2}< 0\)

\(\Rightarrow f\left(x\right)\)có ít nhất một nghiệm trên đoạn \(\left[-1;8\right]\)

Lại có f(7) = 0 \(\Rightarrow\)x = 7 là nghiệm của f(x) \(\Rightarrow y=3\)

Vậy hệ phương trình có 1 nghiệm \(\left(x,y\right)=\left(7,3\right)\)

6 tháng 10 2018

\(\frac{\left(x+y+z\right)^2}{3}\ge xy+yz+zx\Rightarrow x+y+z\ge3\)

\(P=\frac{x^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}}+\frac{y^2}{\sqrt{\left(y+2\right)\left(y^2-2y+4\right)}}+\frac{z^2}{\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}}\) 

\(\Rightarrow P\ge\frac{\left(x+y+z\right)^2}{\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}+\sqrt{\left(y+2\right)\left(y^2-2y+4\right)}+\sqrt{\left(z+2\right)\left(z^2-2z+4\right)}}\)  

\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{\left(x+2+x^2-2x+4\right)+\left(y+2+y^2-2y+4\right)+\left(z+2+z^2-2z+4\right)}\) 

\(\Rightarrow P\ge\frac{2\left(x+y+z\right)^2}{\left(x^2+y^2+z^2\right)-\left(x+y+z\right)+18}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)-2\left(xy+yz+zx\right)+18}=\frac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2-\left(x+y+z\right)+12}\)

Dự đoán Min P=1 khi x+y+z=3

Đặt \(t=x+y+z\ge3\) 

\(\Rightarrow P\ge\frac{2t^2}{t^2-t+12}\Rightarrow P-1\ge\frac{t^2+t-12}{t^2-t+12}=\frac{\left(t-3\right)\left(t+4\right)}{t^2-t+12}\ge0\) 

\(\Rightarrow P\ge1\)

8 tháng 10 2018

bạn là một thiên tài

6: \(\Leftrightarrow2x^2+3x+9+\sqrt{2x^2+3x+9}-42=0\)

Đặt \(\sqrt{2x^2+3x+9}=a\left(a>=0\right)\)

Phương trình sẽ trở thành là: a^2+a-42=0

=>(a+7)(a-6)=0

=>a=-7(loại) hoặc a=6(nhận)

=>2x^2+3x+9=36

=>2x^2+3x-27=0

=>2x^2+9x-6x-27=0

=>(2x+9)(x-3)=0

=>x=3 hoặc x=-9/2

8: \(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
=>\(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

=>\(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\\z=12\end{matrix}\right.\)

19 tháng 5 2018

GTLN hay GTNN bạn ơi ;(

19 tháng 5 2018

GTNN bạn