K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2021

link bài giải đây ạ => http://bblink.com/ghyht

8 tháng 10 2020

x2 + 2y2 + z2 - 2xy - 2y - 4z + 5 = 0

<=> ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + ( z2 - 4z + 4 ) = 0

<=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2 = 0

Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\forall x;y;z\)=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2\(\ge\)0\(\forall\)x ; y ; z

Dấu "=" xảy ra <=>\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\)<=>\(\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)( 1 )

Thay ( 1 ) vào A , ta được :

\(A=\left(1-1\right)^{2020}+\left(1-2\right)^{2020}+\left(2-3\right)^{2020}=0+1+1=2\)

Vậy A = 2

8 tháng 10 2020

Ta có: \(x^2+2y^2+z^2-2xy-2y-4z+5=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=0\)

Mà \(VT\ge0\left(\forall x,y,z\right)\) nên dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)

13 tháng 12 2022

Cứu với ;-;

17 tháng 11 2019

Ta có: x^2+2y^2+z^2-2xy-2y-4z+5=0

<=> ( x^2 - 2xy + y^2 ) + ( y^2 - 2y +1 ) + ( z^2 - 4z + 4 ) = 0

<=> ( x - y )^2 + ( y - 1 )^2 + ( z - 2 )^2 = 0

=> x - y = 0 và y - 1 = 0 và z - 2 = 0

<=> x = y = 1 và z = 4

Nên P = 1

7 tháng 8 2020

\(x^3+y^3+z^3+6=3\left(x^2+y^2+z^2\right)\Rightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)+3xyz+6=3\left(x^2+y^2+z^2\right)\)Mà x+y+z=3

\(\Rightarrow3\left(x^2+y^2+z^2-xy-xz-yz\right)+3xyz+6=3\left(x^2+y^2+z^2\right)\)

\(\Rightarrow x^2+y^2+z^2-xy-yz-xz+xyz+2=x^2+y^2+z^2\)

\(\Rightarrow xyz-xy-yz-xz+2=0\Rightarrow\left(xyz-xy\right)-\left(yz-y\right)-\left(xz-x\right)+\left(2-x-y\right)=0\)

\(\Rightarrow xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(2-3+z\right)=0\Rightarrow xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)=0\)

\(\Rightarrow\left(z-1\right)\left(xy-x-y+1\right)=0\Rightarrow\left(z-1\right)\left[\left(xy-x\right)-\left(y-1\right)\right]=0\Rightarrow\left(z-1\right)\left[x\left(y-1\right)-\left(y-1\right)\right]=0\)

\(\Rightarrow\left(z-1\right)\left(x-1\right)\left(y-1\right)=0\)

Suy ra có ít nhất 1 trong 3 số x,y,z bằng 1,khi đó A=0

Vậy A=0

6 tháng 10 2021

\(1,\Rightarrow2^b\left(2^{a-b}-1\right)=256=2^8\left(a>b\right)\)

Do \(2^b\) chẵn, \(2^{a-b}-1\) lẻ, \(2^8\) chẵn nên \(2^{a-b}-1=1\Leftrightarrow2^{a-b}=2\Leftrightarrow a-b=1\)

\(\Leftrightarrow2^b\cdot1=2^8\Leftrightarrow b=8\Leftrightarrow a=9\)

Vậy \(\left(a;b\right)=\left(8;9\right)\) 

6 tháng 10 2021

Sao vậy

4 tháng 1 2022

\(x^2+y^2+z^2=xy+yz+zx\\ \Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\\ \Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\Leftrightarrow x=y=z\\ \text{Mà }x+y+z=-3\Leftrightarrow x=y=z=-1\\ \Leftrightarrow B=1-1+1=1\)

M+2019=2xy−yz−zx+2020M+2019=2xy−yz−zx+2020

=2xy−yz−zx+x2+y2+z2=2xy−yz−zx+x2+y2+z2

=(x+y−z2)2+3z24≥0=(x+y−z2)2+3z24≥0

⇒Mmin=0⇒Mmin=0 khi ⎧⎩⎨⎪⎪⎪⎪x+y−z2=03z24=0x2+y2+z2=2020{x+y−z2=03z24=0x2+y2+z2=2020

⇔⎧⎩⎨⎪⎪x+y=0z=0x2+y2=2020⇔{x+y=0z=0x2+y2=2020 ⇒⎧⎩⎨⎪⎪x=±1010−−−−√y=−xz=0

1 tháng 11 2020

mình không hiểu ạ

12 tháng 9 2018

     \(x^3+y^3=z\left(3xy-z^2\right)\)

\(\Rightarrow x^3+y^3=3xyz-z^3\)

\(\Rightarrow x^3+y^3+z^3=3xyz\)(1)

Từ (1) bạn biến đổi được: \(\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\) ( x+y+z=0 ko thỏa mãn đề bài.)

Mà \(x+y+z=3\Rightarrow x=y=z=1\)

Khi đó: \(A=673\left(1^{2020}+1^{2020}+1^{2020}\right)+1\)

              \(=673.3+1=2020\)

Vậy \(A=2020.\)Chúc bạn học tốt.