K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

ai trả lời đi

a) Ta có: \(\frac{x+2y}{22}=\frac{x-2y}{14}\Rightarrow\frac{x+2y}{x-2y}=\frac{22}{14}=\frac{11}{7}\)

\(\Rightarrow7\left(x+2y\right)=11\left(x-2y\right)\)

\(\Rightarrow7x+14y=11x-22y\)

\(\Rightarrow14y+22y=11x-7x\)

\(\Rightarrow36y=4x\Rightarrow\frac{x}{y}=\frac{36}{4}=9\)

b) Ta có: \(\frac{x}{y}=9\Rightarrow\frac{x}{9}=\frac{y}{1}\Rightarrow\frac{x^2}{81}=\frac{y^2}{1}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{81}=\frac{y^2}{1}=\frac{x^2+y^2}{81+1}=\frac{82}{82}=1\)

\(\Rightarrow\frac{x^2}{81}=1\Rightarrow x^2=81\Rightarrow\orbr{\begin{cases}x=81\\x=-81\end{cases}}\)

     \(\frac{y^2}{1}=1\Rightarrow y^2=1\Rightarrow\orbr{\begin{cases}y=1\\y=-1\end{cases}}\)

Vậy .................

8 tháng 3 2017

Đề sai nha pn phải là x^2+y^2=82

a) Ta có: \(\frac{X+2Y}{22}\)=\(\frac{X-2Y}{14}\)

=> 14(x+2y)=22(x-2y)

=>14x+28y=22x-44y

=>72y-8x=0

=>72x=8x

=>9y=x

=>\(\frac{X}{Y}\)=9

Vậy tỉ số \(\frac{X}{Y}\)=9

 b) Mk ko bít làm nhé.

Nhớ K nha

22 tháng 11 2015

\(\frac{x-y}{x+2y}=\frac{3}{4}=>\left(x-y\right).4=\left(x+2y\right).3=>4x-4y=3x+6y=>4x-3x=4y+6y=>x=10y=>\frac{x}{y}=10\)

vậy tỉ số x/y=10/1=10

DD
17 tháng 10 2021

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1-2\left(y-2\right)+3\left(z-3\right)}{2-2.3+3.4}=\frac{x-2y+3z-6}{8}=1\)

\(\Leftrightarrow\hept{\begin{cases}x-1=2\\y-2=3\\z-3=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)

28 tháng 10 2020

Ta có \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)

Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\\z=3k\end{cases}}\)

Khi đó P = \(\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}\)

28 tháng 10 2020

Có các số x, y, z tỉ lệ với các số 5, 4, 3
\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)
\(\Rightarrow\hept{\begin{cases}x=5k\\y=4k\\z=3k\end{cases}}\)
Thay vào P, ta được:
P = \(\frac{5k+2.4k+3.3k}{5k-2.4k+3.3k}\)
P = \(\frac{5k+8k+9k}{5k-8k+9k}\)
P = \(\frac{k.\left(5+8+9\right)}{k.\left(5-8+9\right)}\)
P = \(\frac{k.22}{k.6}\)
P = \(\frac{1.11}{1.3}\)
P = \(\frac{11}{3}\)
Vậy P = \(\frac{11}{3}\)
Chúc bạn học tốt ^^!

13 tháng 2 2018

b, Ta co: \(x^3+xy^2-x^2y-y^3+3\)

\(=\left(x^3-y^3\right)+\left(xy^2-x^2y\right)+3\)

\(=\left(x-y\right)^3+3xy\left(x-y\right)-xy\left(x-y\right)+3\)

= 3 ( vì x-y = 0)

25 tháng 6 2017

ta có :   x2 -  (y-3)x - 2y - 1 =0   <=>   x2 -  xy +3x -2y -1 =0     <=>   x2 +3x -1 = xy +2y

<=>   x2 + 3x -1 =y(x+2)     xét x=-2 không phải là nghiệm ( đoạn này để khẳng định \(x+2\ne0\)nhằm đưa x+2 xuống mẫu)

<=>    \(\frac{x^2+3x-1}{x+2}=y\)

Vì \(y\in Z\) nên \(\frac{x^2+3x-1}{x+2}=y\)   hay  \(x^2+3x-1⋮x+2\) <=>  \(\left(x+2\right).\left(x+1\right)-3⋮x+2\)

hay   \(-3⋮x+2\)(vì\(\left(x+2\right).\left(x+1\right)⋮x+2\)

=>\(x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)    <=>   \(x\in\left\{-5;-3;-1;1\right\}\)

=>     x=-5     =>y= -3

         x=-3     =>y=1

         x=-1     =>y-3

         x=1      =>y=1