K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2018

\(2\left(x^6+y^6\right)-3\left(x^4+y^4\right)=2\left[\left(x^2\right)^3+\left(y^2\right)^3\right]-3\left[\left(x^2\right)^2+\left(y^2\right)^2\right]\)

                                                         \(=2\left[\left(x^2+y^2\right)^3-3x^2y^2\left(x^2+y^2\right)\right]-3\left[\left(x^2+y^2\right)^2-2x^2y^2\right]\)

                                                thay \(x^2+y^2=1\) vào ta được

                                                           \(=2\left(1^3-3x^2y^2\right)-3\left(1^2-2x^2y^2\right)\)

                                                             \(=2-6x^2y^2-3+6x^2y^2=-1\)

27 tháng 10 2023

a, \(8^3yz+12^2yz+6xyz+yz\)

\(=512yz+144yz+6xyz+yz\)

\(=yz\left(512+14+6x+1\right)\)

\(=yz\left(527+6x\right)\)

$---$

b, \(81x^4\left(z^2-y^2\right)-z^2+y^2\)

\(=81x^4\left(z^2-y^2\right)-\left(z^2-y^2\right)\)

\(=\left(z^2-y^2\right)\left(81x^4-1\right)\)

\(=\left(z-y\right)\left(z+y\right)\left[\left(9x^2\right)^2-1^2\right]\)

\(=\left(z-y\right)\left(z+y\right)\left(9x^2-1\right)\left(9x^2+1\right)\)

\(=\left(z-y\right)\left(z+y\right)\left[\left(3x\right)^2-1^2\right]\left(9x^2+1\right)\)

\(=\left(z-y\right)\left(z+y\right)\left(3x-1\right)\left(3x+1\right)\left(9x^2+1\right)\)

$---$

c, \(\dfrac{x^3}{8}-\dfrac{y^3}{27}+\dfrac{x}{2}-\dfrac{y}{3}\)

\(=\left[\left(\dfrac{x}{2}\right)^3-\left(\dfrac{y}{3}\right)^3\right]+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)

\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}\right)+\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\)

\(=\left(\dfrac{x}{2}-\dfrac{y}{3}\right)\left(\dfrac{x^2}{4}+\dfrac{xy}{6}+\dfrac{y^2}{9}+1\right)\)

$---$

d, \(x^6+x^4+x^2y^2+y^4-y^6\)

\(=\left(x^6-y^6\right)+\left(x^4+x^2y^2+y^4\right)\)

\(=\left[\left(x^2\right)^3-\left(y^2\right)^3\right]+\left(x^4+x^2y^2+y^4\right)\)

\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)+\left(x^4+x^2y^2+y^4\right)\)

\(=\left(x^4+x^2y^2+y^4\right)\left(x^2-y^2+1\right)\)

$Toru$

Bài 3: 

\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)

\(=\left(x^2-9\right)\left(x^2-1\right)+15\)

\(=x^4-10x^2+9+15\)

\(=x^4-10x^2+24\)

\(=\left(x^2-4\right)\left(x^2-6\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)

 

13 tháng 11 2021

2: \(=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{-\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{-\left(x+y\right)\left(x^2+y^2\right)}{x^2+xy+y^2}\)

a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=115\)

c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)

\(C=x^2-y^2=\left(x+y\right)\left(x-y\right)=15\cdot5=75\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

$x^3+y^3=(x+y)^3-3xy(x+y)=2^3-3xy.2=8-6xy$

$=8-3.2xy=8-3[(x+y)^2-(x^2+y^2)]=8-3(2^2-34)=98$

----------------

$x^4+y^4=(x^2+y^2)^2-2x^2y^2=34^2-\frac{1}{2}(2xy)^2$

$=34^2-\frac{1}{2}[(x+y)^2-(x^2+y^2)]^2=34^2-\frac{1}{2}(2^2-34)^2=706$

3 tháng 8 2023

a) \(\left(x-5\right)^2=\left(3+2x\right)^2\)

\(\Rightarrow\left(3+2x\right)^2-\left(x-5\right)^2=0\)

\(\Rightarrow\left(3+2x+x-5\right)\left(3+2x-x+5\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(x+8\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-8\end{matrix}\right.\)

b) \(27x^3-54x^2+36x=9\)

\(\Rightarrow27x^3-54x^2+36x-9=0\)

\(\Rightarrow27x^3-54x^2+36x-8+8-9=0\)

\(\Rightarrow\left(3x-2\right)^3-1=0\)

\(\Rightarrow\left(3x-2-1\right)\left[\left(3x-2\right)^2+3x-2+1\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-2\right)^2+3x-2+\dfrac{1}{4}-\dfrac{1}{4}+1\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)

\(\Rightarrow\left(3x-3\right)\left[\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\left(1\right)\)

mà \(\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)

\(\left(1\right)\Rightarrow3x-3=0\Rightarrow3x=3\Rightarrow x=1\)

3 tháng 8 2023

(\(x-5\))2 = (3 +2\(x\))2 ⇒ \(\left[{}\begin{matrix}x-5=3+2x\\x-5=-3-2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-8\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x\in\){-8; \(\dfrac{2}{3}\)}

  27\(x^3\) - 54\(x^2\) + 36\(x\) = 9

27\(x^3\) - 54\(x^2\) + 36\(x\) - 8 = 1

(3\(x\) - 2)3 = 1 ⇒ 3\(x\) - 2 = 1 ⇒ \(x\) = 1

 

 

 

 

 

a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=125\)

b:\(B=x^4+y^4\)

\(=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=125^2-2\cdot2500\)

=10625

c:  \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)

\(C=x^2-y^2=\left(x-y\right)\left(x+y\right)=15\cdot5=75\)

6) Ta có: \(x^2+2xy+y^2-x-y-12\)

\(=\left(x+y\right)^2-\left(x+y\right)-12\)

\(=\left(x+y-4\right)\left(x+y+3\right)\)

7) Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

8) Ta có: \(4x^4-32x^2+1\)

\(=4x^4+12x^3+2x^2-12x^3-36x^2-6x+2x^2+6x+1\)

\(=2x^2\left(2x^2+6x+1\right)-6x\left(2x^2+6x+1\right)+\left(2x^2+6x+1\right)\)

\(=\left(2x^2+6x+1\right)\left(2x^2-6x+1\right)\)

9) Ta có: \(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)

\(=3\left[x^4+2x^2+1-x^2\right]-\left(x^2+x+1\right)^2\)

\(=3\left(x^2-x+1\right)\left(x^2+x+1\right)-\left(x^2+x+1\right)^2\)

\(=\left(x^2+x+1\right)\left(3x^2-3x+3-x^2-x-1\right)\)

\(=\left(x^2+x+1\right)\left(2x^2-4x+2\right)\)

\(=2\left(x-1\right)^2\cdot\left(x^2+x+1\right)\)

27 tháng 1 2019

x4 + y4 = (x2 + y2)2-2x2 y2 = 182-2.52 = 274

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

a. 

$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$

b.

$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$

c.

$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$

d.

$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$

$=(x+1)(x^2-4x+1)$

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

e.

$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$

$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$

f.

$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$

$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$

g.

$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$

$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$

$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$

$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$

h.

$x^6+2x^5+x^4-2x^3-2x^2+1$

$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$

$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$